×

Operators on the orthogonal complement of the Dirichlet space. II. (English) Zbl 1234.47018

Summary: In this paper, we first prove that a dual Hankel operator \(R _{\phi }\) on the orthogonal complement of the Dirichlet space is compact for \(\phi \in W ^{1,\infty }(D)\), and then that a semicommutator of two Toeplitz operators on the Dirichlet space or two dual Toeplitz operators on the orthogonal complement of the Dirichlet space in Sobolev space is compact. We also prove that a dual Hankel operator \(R _{\phi }\) with \(\phi \in W ^{1,\infty }(D)\) is of finite rank if and only if \(B \bar{\phi}\) is orthogonal to the Dirichlet space for some finite Blaschke product \(B\), and give a sufficient and necessary condition for the semicommutator of two dual Toeplitz operators to be of finite rank.
Editor’s remark. For Part I, see [T. Yu, J. Math. Anal. Appl. 357, No. 1, 300–306 (2009; Zbl 1180.47023)].

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

Citations:

Zbl 1180.47023
Full Text: DOI

References:

[1] Adams R. Sobolev Spaces. New York: Academic Press, 1975
[2] Axler S, Chang S Y A, Sarason D. Products of Toeplitz operators. Integral Equations Operator Theory, 1978, 1: 285–309 · Zbl 0396.47017 · doi:10.1007/BF01682841
[3] Axler S, Zheng D. Compact operators via the Berezin transform. India Univ Math J, 1998, 47: 387–400 · Zbl 0914.47029
[4] Brown A, Halmos P R. Algebraic properties of Toeplitz operators. J Reine Angew Math, 1964, 213: 89–102 · Zbl 0116.32501
[5] Cao G. Fredholm properties of Toeplitz operators on Dirichlet space. Pacific J Math, 1999, 188: 209–224 · Zbl 0940.47024 · doi:10.2140/pjm.1999.188.209
[6] Ding X, Zheng D. Finite rank commutator of Toeplitz operators or Hankel operators. Houston J Math, 2008, 34: 1099–1119 · Zbl 1161.47020
[7] Guo K, Sun S, Zheng D. Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols. Illinois J Math, 2007, 51: 583–596 · Zbl 1131.47023
[8] Lee Y J. Algebraic properties of Toeplitz operators on the Dirichlet space. J Math Anal Appl, 2007, 329: 1316–1329 · Zbl 1154.31300 · doi:10.1016/j.jmaa.2006.07.041
[9] Luecking D. Finite rank Toeplitz operators on the Bergman space. Proc Amer Math Soc, 2008, 136: 1717–1723 · Zbl 1152.47021 · doi:10.1090/S0002-9939-07-09119-8
[10] Martínez-Avendaño R, Rosenthal P. An Introduction to Operators on the Hardy-Hilbert Space. Graduate Texts in Mathematics, 226. New York: Springer-Verlag, 2007 · Zbl 1116.47001
[11] Ross W. The classical Dirichlet space. In: Recent Advances in Operator-Related Function Theory, Contemp Math, vol. 393. Providence, RI: Amer Math Soc, 2006, 171–197 · Zbl 1135.31007
[12] Stroethoff K, Zheng D. Algebraic and spectral properties of dual Toeplitz operaors. Trans Amer Math Soc, 2002, 354: 2495–2520 · Zbl 0996.47036 · doi:10.1090/S0002-9947-02-02954-9
[13] Wu Z. Operator theory and function theory on Dirichlet space. In: S Axler, J McCarthy and D Sarason, Holomorphic Spaces. Berkeley: MSRI, 1998, 179–199
[14] Yu T. Operators on the orthogonal complement of the Dirichlet space. J Math Anal Appl, 2009, 357: 300–306 · Zbl 1180.47023 · doi:10.1016/j.jmaa.2009.04.019
[15] Yu T. Toeplitz operators on the Dirichlet space. Integral Equations Operator Theory, 2010, 67: 163–170 · Zbl 1233.47026 · doi:10.1007/s00020-010-1754-2
[16] Yu T, Wu S. Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space. Acta Math Sin, Engl Ser, 2009, 25: 245–252 · Zbl 1198.47048 · doi:10.1007/s10114-008-7109-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.