×

Thick pen transformation for time series. (English) Zbl 1226.62077

Summary: Traditional visualization of time series data often consists of plotting the time series values against time and ‘connecting the dots’. We propose an alternative, multiscale visualization technique, motivated by the scale-space approach in computer vision. In brief, our method also ‘connects the dots’ but uses a range of pens of varying thicknesses for this. The resulting multiscale map, which is termed the thick pen transform, corresponds to viewing the time series from a range of distances. We formally prove that the thick pen transform is a discriminatory statistic for two Gaussian time series with distinct correlation structures. Further, we show interesting possible applications of the thick pen transform to measuring cross-dependence in multivariate time series, classifying time series and testing for stationarity. In particular, we derive the asymptotic distribution of our test statistic and argue that the test is applicable to both linear and non-linear processes under low moment assumptions. Various other aspects of the methodology, including other possible applications, are also discussed.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62A09 Graphical methods in statistics
62M07 Non-Markovian processes: hypothesis testing
62E20 Asymptotic distribution theory in statistics

References:

[1] Andreou, Detecting multiple breaks in financial market volatility dynamics, J. Appl. Econmetr. 17 pp 579– (2002) · doi:10.1002/jae.684
[2] Billingsley, Convergence of Probability Measures (1968)
[3] Brillinger, Time Series: Data Analysis and Theory (1975)
[4] Brockwell, Time Series: Theory and Methods (1987) · Zbl 0604.62083 · doi:10.1007/978-1-4899-0004-3
[5] Chaudhuri, SiZer for exploration of structures in curves, J. Am. Statist. Ass. 94 pp 807– (1999) · Zbl 1072.62556 · doi:10.2307/2669996
[6] Cho, Edge-adaptive local min/max nonlinear filter-based shoot suppression, IEEE Trans. Consum. Electron. 52 pp 1107– (2006) · doi:10.1109/TCE.2006.1706514
[7] Dahlhaus, Fitting time series models to nonstationary processes, Ann. Statist. 25 pp 1– (1997) · Zbl 0871.62080 · doi:10.1214/aos/1034276620
[8] Davidson, Stochastic Limit Theory (1994) · Zbl 0904.60002 · doi:10.1093/0198774036.001.0001
[9] Davis, Break detection for a class of nonlinear time series models, J. Time Ser. Anal. 29 pp 834– (2008) · Zbl 1199.62006 · doi:10.1111/j.1467-9892.2008.00585.x
[10] Douglas, Running max/min calculation using a pruned ordered list, IEEE Trans. Signal Process. 44 pp 2872– (1996) · doi:10.1109/78.542446
[11] Doukhan, Theory and Applications of Long-range Dependence (2003) · Zbl 1005.00017
[12] Efron, Least angle regression, Ann. Statist. 32 pp 407– (2004) · Zbl 1091.62054 · doi:10.1214/009053604000000067
[13] Fan, Nonlinear Time Series (2003)
[14] Fryzlewicz, Normalised least-squares estimation in time-varying ARCH models, Ann. Statist. 36 pp 742– (2008) · Zbl 1133.62071 · doi:10.1214/07-AOS510
[15] Hall, On the performance of box-counting estimators of fractal dimension, Biometrika 80 pp 246– (1993) · Zbl 0769.62062 · doi:10.1093/biomet/80.1.246
[16] Hotelling, Tubes and spheres in n-spaces and a class of statistical problems, Am. J. Math. 61 pp 440– (1939) · JFM 65.0795.02 · doi:10.2307/2371512
[17] Hurst, Long term storage capacity of reservoirs, Trans. Am. Soc. Civ. Engrs 116 pp 770– (1951)
[18] Johansen, Hotelling’s theorem of the volume of tubes: some illustrations in simultaneous inference and data analysis, Ann. Statist. 18 pp 652– (1990) · Zbl 0723.62018 · doi:10.1214/aos/1176347620
[19] Kakizawa, Discrimination and clustering for multivariate time series, J. Am. Statist. Ass. 93 pp 328– (1998) · Zbl 0906.62060 · doi:10.2307/2669629
[20] Kennedy, The distribution of the maximum Brownian excursion, J. Appl. Probab. 13 pp 371– (1976) · Zbl 0338.60048 · doi:10.2307/3212843
[21] Keogh, Exact indexing of dynamic time warping, Knowl. Inform. Syst. 7 pp 358– (2005) · doi:10.1007/s10115-004-0154-9
[22] Knowles, On Hotelling’s geometric approach to testing for a nonlinear parameter in regression, Int. Statist. Rev. 57 pp 205– (1988) · Zbl 0707.62125 · doi:10.2307/1403794
[23] Lee, Morphologic edge detection, IEEE Trans. Robot. Autom. 3 pp 142– (1987) · doi:10.1109/JRA.1987.1087088
[24] Lindeberg, Scale-space Theory in Computer Vision (1994) · Zbl 0812.68040 · doi:10.1007/978-1-4757-6465-9
[25] Nason, Wavelet Methods in Statistics with R (2008) · Zbl 1165.62033 · doi:10.1007/978-0-387-75961-6
[26] Neumann, A wavelet-based test for stationarity, J. Time Ser. Anal. 21 pp 597– (2000) · Zbl 0972.62085 · doi:10.1111/1467-9892.00200
[27] Paparoditis, Testing temporal constancy of the spectral structure of a time series, Bernoulli 15 pp 1190– (2009) · Zbl 1200.62049 · doi:10.3150/08-BEJ179
[28] Park, Improved SiZer for time series, Statist. Sin. 19 pp 1511– (2009) · Zbl 1191.62152
[29] Percival, Wavelet Methods for Time Series Analysis (2000) · Zbl 0963.62079 · doi:10.1017/CBO9780511841040
[30] Priestley, Evolutionary spectra and non-stationary processes, J. R. Statist. Soc. B 27 pp 204– (1965) · Zbl 0144.41001
[31] Priestley, Spectral Analysis and Time Series (1981) · Zbl 0537.62075
[32] Rondonotti, SiZer for time series: a new approach to the analysis of trends, Electron. J. Statist. 1 pp 268– (2007) · Zbl 1135.62371 · doi:10.1214/07-EJS006
[33] Shumway, Time Series Analysis and Its Applications: with R Examples (2006) · Zbl 1096.62088
[34] Starica, Non-stationarities in stock returns, Rev. Econ. Statist. 87 pp 503– (2005) · doi:10.1162/0034653054638274
[35] Sun, Tail probabilities of the maxima of Gaussian random fields, Ann. Probab. 21 pp 34– (1993) · Zbl 0772.60038 · doi:10.1214/aop/1176989393
[36] Tibshirani, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. B 58 pp 267– (1996) · Zbl 0850.62538
[37] Van Bellegem, Locally adaptive estimation of evolutionary wavelet spectra, Ann. Statist. 36 pp 1879– (2008) · Zbl 1142.62067 · doi:10.1214/07-AOS524
[38] Vemis, The use of Boolean functions and logical operations for edge detection in images, Signal Process. 45 pp 161– (1995) · Zbl 0875.68949 · doi:10.1016/0165-1684(95)00048-I
[39] Vidakovic, Statistical Modeling by Wavelets (1999) · doi:10.1002/9780470317020
[40] Werman, Min max operators in texture analysis, IEEE Trans. Pattn Anal. Mach. Intell. 7 pp 730– (1985) · doi:10.1109/TPAMI.1985.4767732
[41] Weyl, On the volume of tubes, Am. J. Math. 61 pp 461– (1939) · Zbl 0021.35503 · doi:10.2307/2371513
[42] Ye, Stroke-model-based character extraction from gray-level documentimages, IEEE Trans. Image Process. 8 pp 1152– (2001) · Zbl 1062.68596
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.