×

Applications of multi-parameter martingales in Fourier analysis. (English) Zbl 1231.42028

The Fejér means of the double Walsh-Fourier series of a martingale \(f\) are defined by \[ \sigma_{n,m}f:= {1\over nm} \sum^n_{k=1} \sum^m_{\ell= 1} s_{k,\ell} f, \] where the \(s_{k,\ell}f\) are the rectangular partial sums of the double series in question. The maximal Fejér operator is defined by \(\sigma_* f:= \sup\{|\sigma_{n,m}f|:n,m\in\mathbb{N}\}\).
Iterating the corresponding one-dimensional result gives Theorem 4.1, which says that if \(f\in L_p[0,1)^2\) for some \(1< p\leq\infty\), then \[ \|\sigma_* f\|_p\leq C_p\| f\|_p, \] where \(C_p\) is a constant depending only on \(p\).
The main result of the present paper is Theorem 4.2, which says that if \(f\in H_p[0,1)^2\), the two-parameter martingale Hardy space, for some \(1/2< p\leq\infty\), then \[ \|\sigma_* f\|_p\leq C_p\| f\|_{H_p}. \] Pointwise convergence of the Fejér means follows from these theorems by applying the density argument of J. Marcinkiewicz and A. Zygmund [Fundam. Math. 32, 122–132 (1939; Zbl 0022.01804)]. In particular, it follows that if \(f\in L(\log L)[0, 1)^2\), then the Fejér means of the two-dimensional Walsh-Fourier series of \(f\) converge almost everywhere.

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
60G42 Martingales with discrete parameter
43A75 Harmonic analysis on specific compact groups
42B30 \(H^p\)-spaces

Citations:

Zbl 0022.01804
Full Text: DOI

References:

[1] Bernard A., Bull. Sci. Math. 103 pp 297–
[2] Billard P., Studia Math. 28 pp 363–
[3] DOI: 10.1214/aop/1176994580 · Zbl 0454.60047 · doi:10.1214/aop/1176994580
[4] DOI: 10.1007/BFb0091095 · doi:10.1007/BFb0091095
[5] DOI: 10.1214/aop/1176997023 · Zbl 0301.60035 · doi:10.1214/aop/1176997023
[6] DOI: 10.1007/978-3-0348-7448-9 · doi:10.1007/978-3-0348-7448-9
[7] DOI: 10.1007/BFb0059329 · doi:10.1007/BFb0059329
[8] DOI: 10.1007/BF02392815 · Zbl 0144.06402 · doi:10.1007/BF02392815
[9] DOI: 10.1090/S0273-0979-1985-15291-7 · Zbl 0557.42007 · doi:10.1090/S0273-0979-1985-15291-7
[10] DOI: 10.1090/S0002-9904-1971-12793-3 · Zbl 0234.42008 · doi:10.1090/S0002-9904-1971-12793-3
[11] DOI: 10.1073/pnas.83.4.840 · Zbl 0602.42023 · doi:10.1073/pnas.83.4.840
[12] DOI: 10.1214/aop/1176992083 · Zbl 0631.60048 · doi:10.1214/aop/1176992083
[13] DOI: 10.1090/S0002-9939-99-05293-4 · Zbl 0976.42016 · doi:10.1090/S0002-9939-99-05293-4
[14] DOI: 10.1007/s10474-007-5268-6 · Zbl 1174.42336 · doi:10.1007/s10474-007-5268-6
[15] Grafakos L., Classical and Modern Fourier Analysis (2004) · Zbl 1148.42001
[16] DOI: 10.1007/BFb0078096 · Zbl 0656.60056 · doi:10.1007/BFb0078096
[17] DOI: 10.5802/aif.1125 · Zbl 0638.47026 · doi:10.5802/aif.1125
[18] Marcinkiewicz J., Fund. Math. 32 pp 122–
[19] DOI: 10.1007/BFb0064605 · doi:10.1007/BFb0064605
[20] DOI: 10.1007/BF01903827 · Zbl 0337.42014 · doi:10.1007/BF01903827
[21] Neveu J., Discrete-Parameter Martingales (1971)
[22] Schipp F., Anal. Math. 2 pp 91–
[23] Schipp F., Walsh Series: An Introduction to Dyadic Harmonic Analysis (1990) · Zbl 0727.42017
[24] Sjölin P., Arkiv Math. 8 pp 551–
[25] Stein E. M., Introduction to Fourier Analysis on Euclidean Spaces (1971) · Zbl 0232.42007
[26] DOI: 10.1007/978-1-4020-2876-2 · doi:10.1007/978-1-4020-2876-2
[27] Weisz F., Lecture Notes in Math 1568, in: Martingale Hardy Spaces and Their Applications in Fourier Analysis (1994) · Zbl 0796.60049 · doi:10.1007/BFb0073448
[28] DOI: 10.1006/jath.1996.3021 · Zbl 0873.42017 · doi:10.1006/jath.1996.3021
[29] DOI: 10.1007/978-94-017-3183-6 · Zbl 1306.42003 · doi:10.1007/978-94-017-3183-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.