×

Optimal replacement policy and inspection interval for condition-based maintenance. (English) Zbl 1356.90046

Summary: In condition-based maintenance (CBM), replacement policy is often defined as a rule for replacement or leaving an item (or a system) in operation until the next inspection, depending on monitoring results. The criterion for determining the optimal threshold for replacement, also known as optimal control limit, is to minimise the average maintenance costs per unit time due to preventive and failure replacements over a long time horizon. On the one hand, higher frequency of inspections provides more information about the condition of the system and, thus, maintenance actions are performed more effectively, namely, unnecessary preventive replacements are avoided and the number of replacements due to failure is reduced. Consequently, the cost associated to failure and preventive replacements are decreased. On the other hand, in many real cases, inspections require labour, specific test devices, and sometimes suspension of the operations and, thus, as the number of inspections increase, the inspection cost also increases. In this paper, preventive and failure replacement costs as well as inspection cost are taken into account to determine the optimal control limit and the optimal inspection interval simultaneously. The proposed approach is illustrated through a numerical example.

MSC:

90B25 Reliability, availability, maintenance, inspection in operations research
Full Text: DOI

References:

[1] Banjevic D, INFOR 39 pp 32– (2001)
[2] DOI: 10.1093/imaman/dpi029 · Zbl 1137.90438 · doi:10.1093/imaman/dpi029
[3] Chen D, Reliability Engineering and System Safety 76 pp 43– (2002)
[4] DOI: 10.1016/j.ress.2004.11.001 · doi:10.1016/j.ress.2004.11.001
[5] Christer AH, Journal of the Operational Research Society 35 pp 401– (1984)
[6] DOI: 10.1016/0377-2217(94)00262-B · Zbl 0905.90084 · doi:10.1016/0377-2217(94)00262-B
[7] DOI: 10.1093/imaman/6.1.67 · doi:10.1093/imaman/6.1.67
[8] DOI: 10.1109/24.406593 · doi:10.1109/24.406593
[9] Cox DR, Analysis of survival data (1984)
[10] DOI: 10.1080/00207540600596882 · Zbl 1128.90326 · doi:10.1080/00207540600596882
[11] DOI: 10.1179/030192300677381 · doi:10.1179/030192300677381
[12] DOI: 10.1016/S0951-8320(01)00148-X · doi:10.1016/S0951-8320(01)00148-X
[13] DOI: 10.1109/24.855541 · doi:10.1109/24.855541
[14] DOI: 10.1108/13552519710167728 · doi:10.1108/13552519710167728
[15] DOI: 10.1108/13552519810213644 · doi:10.1108/13552519810213644
[16] DOI: 10.1108/13552519910282647 · doi:10.1108/13552519910282647
[17] Jardine AKS, Maintenance, replacement, and reliability: theory and applications (2006)
[18] DOI: 10.1016/S0377-2217(96)00317-7 · Zbl 0917.90142 · doi:10.1016/S0377-2217(96)00317-7
[19] Makis V, INFOR 30 pp 172– (1992)
[20] Mobley RK, An introduction to predictive maintenance (1989)
[21] DOI: 10.1080/00207549608904902 · Zbl 0923.90078 · doi:10.1080/00207549608904902
[22] DOI: 10.1111/j.1475-3995.1997.tb00092.x · Zbl 0906.90078 · doi:10.1111/j.1475-3995.1997.tb00092.x
[23] DOI: 10.1080/00207540600654509 · Zbl 1128.90329 · doi:10.1080/00207540600654509
[24] DOI: 10.1080/002075400188933 · Zbl 0944.90536 · doi:10.1080/002075400188933
[25] DOI: 10.1108/13552510010346824 · doi:10.1108/13552510010346824
[26] DOI: 10.1057/palgrave.jors.2601508 · Zbl 1171.90378 · doi:10.1057/palgrave.jors.2601508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.