×

Simulating the motion of a flexible fiber in 3D tangentially injected swirling airflow in a straight pipe-effects of some parameters. (English) Zbl 1227.76020

Summary: A numerical model for particle-level simulation of fiber suspensions has been used to simulate fiber dynamics in three-dimensional tangentially injected swirling airflow in air-jet spinning nozzles. The fiber is modeled as chains of beads connected through massless rods, and its flexibility is defined by the bending and twisting displacements. The effects of some parameters, such as fiber initial position, the injection angle and the injector diameter on fiber motion and yarn properties are discussed. The springy, snake-like and week helical regimes of fiber motion are observed under the most cases. The far from the tube center the fiber release position, the smaller the fiber flexibility is. For a smaller injection angle, the self-entanglement regimes of fiber motion are observed in the downstream of the injectors. The model also predicted the complex helical configuration in the nozzle with a small injector diameter. The predictions of yarn properties coincide with the experimental results reported by several researchers.

MSC:

76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
Full Text: DOI

References:

[1] Elliman, D. G.; Fussey, D. E.; Hay, N.: Predictions and measurements of a turbulent, axisymmetric ducted diffusion flame, Int. J. Heat mass transfer 21, 1393-1402 (1978)
[2] Li, H.; Tomita, Y.; Fanatsn, K.: Research of swirling flow pneumatic conveying system in a horizontal pipeline. Part 1: pressure drop and flow patterns, Trans. JSME. 58, 1599-1604 (1992)
[3] Li, H.; Tomita, Y.: Characteristics of swirling flow in a circular pipe, J. fluid eng. 116, 370-373 (1994)
[4] Grosberg, P.; Oxenham, W.; Miao, M.: The insertion of ’twist’ into yarns by means of air-jets. Part I: An experimental study of air-jet spinning, J. text. Inst. 78, No. 3, 189-203 (1987)
[5] Arlov, A. E.; Forgacs, O. L.; Mason, S. G.: Particle motions in sheared suspensions: IV. General behavior of wood pulp fibers, Svensk papperstidn. 61, No. 3, 61-67 (1958)
[6] Forgacs, O. L.; Mason, S. G.: Particle motions in sheared suspensions: IX. Spin and deformation of threadlike particles, J. colloid sci. 14, 457-472 (1959)
[7] Forgacs, O. L.; Mason, S. G.: Particle motion in sheared suspension: X. Orbits of flexible threadlike particles, J. colloid sci. 14, 473-491 (1959)
[8] Salinas, A.; Pittman, J. F. T.: Bending and breaking fibers in sheared suspensions, Poly. eng. Sci. 21, No. 1, 23-31 (1981)
[9] Yamamoto, S.; Matsuoka, T.: A method for dynamic simulation of rigid and flexible fibers in a flow field, J. chem. Phys. 98, No. 1, 644-650 (1993)
[10] Ross, R. F.; Klingenberg, D. J.: Dynamic simulation of flexible fibers composed of linked rigid bodies, J. chem. Phys. 106, No. 7, 2949-2960 (1997)
[11] Stockie, J. M.; Green, S. I.: Simulating the motion of flexible pulp fibres using the immersed boundary method, J. comput. Phys. 147, 147-165 (1998) · Zbl 0935.76065 · doi:10.1006/jcph.1998.6086
[12] Takemura, M.; Chiba, K.; Nakamura, K.: Motion of flexible fibers in a Newtonian flow part 2: evolution of the configuration of a single fiber in a simple shear flow, J. textile eng. 47, No. 3-4, 77-91 (2001)
[13] Schmid, C. F.; Switzer, L. H.; Klingenberg, D. J.: Simulations of fibre flocculation: effects of fibre properties and interfibre friction, J. rheol. 44, 781-809 (2000)
[14] Skjetne, P.; Ross, R. F.; Klingenberg, D. J.: Simulation of single fiber dynamics, J. chem. Phys. 107, No. 6, 2108-2121 (1997)
[15] Qi, D. W.: A new method for direct simulations of flexible filament suspensions in non-zero Reynolds number flows, Int. J. Numer. meth. Fluids. 54, 103-118 (2007) · Zbl 1225.76241 · doi:10.1002/fld.1398
[16] S.B. Lindström, T. Uesaka, Simulation of the motion of flexible fibers in viscous fluid flow, Phys. Fluids. 19 (11) (2007) 113307-1 – 16. · Zbl 1182.76463 · doi:10.1063/1.2778937
[17] Joung, C. G.; Phan, T. N.; Fan, X. J.: Direct simulation of flexible fibers, J. non-Newtonian fluid mech. 99, 1-36 (2001) · Zbl 1066.76527 · doi:10.1016/S0377-0257(01)00113-6
[18] Wang, G.; Yu, W.; Zhou, C.: Optimization of the rod chain model to simulate the motion of a long flexible fiber in simple shear flows, European J. Mech. B/fluids. 25, 337-347 (2006) · Zbl 1093.76061 · doi:10.1016/j.euromechflu.2005.09.004
[19] Guo, H. F.; Xu, B. G.: A novel method for dynamic simulation of flexible fibers in a 3D swirling flow, Int. J. Nonlinear sci. Numer. simul. 10, No. 11-12, 1473-1479 (2009)
[20] Guo, H. F.; Xu, B. G.: A 3D numerical model for a flexible fiber motion in compressible swirling airflow, CMES comput. Model. eng. Sci. 61, No. 3, 201-222 (2010) · Zbl 1231.76205 · doi:10.3970/cmes.2010.061.201
[21] Oxenham, W.; Basu, A.: Effect of jet design on the properties of air-jet spun yarns, Textile res. J. 63, No. 11, 674-678 (1993)
[22] Basu, A.; Oxenham, W.: Interdependence of fibre type and the design of the nozzle of air-jet spinning machine, Indian J. Fibre textile res. 24, 10-15 (1999)
[23] Guo, H. F.; Chen, Z. Y.; Yu, C. W.: Simulation of the effect of geometric parameters on tangentially injected swirling pipe airflow, Comput. fluids 38, No. 10, 1917-1924 (2009) · Zbl 1242.76349
[24] Stalder, H.: New spinning methods: their application and possibilities for development, Int. textile bull. Yarn forming 1, No. 88, 27-39 (1988)
[25] Chanaud, R. C.: Observations of oscillatory motion in certain swirling flows, J. fluid mech. 21, No. 1, 111-127 (1965)
[26] Shih, T. H.; Liou, W. W.; Shabbir, A.; Zhu, J.: A new k – &z.epsiv; eeddy-viscosity model for high Reynolds number turbulent flows, Comput. fluids 24, No. 3, 227-238 (1995) · Zbl 0825.76304
[27] Gere, J. M.; Timoshenko, S. P.: Mechanics of materials, (1987)
[28] Broday, D.; Fichman, M.; Shapiro, M.; Gutfinger, C.: Motion of diffusionless particles in vertical stagnation flows-II. Deposition efficiency of elongated particles, J. aero. Sci. 28, No. 1, 35-52 (1997)
[29] Haider, A.; Levenspiel, O.: Drag coefficient and terminal velocity of spherical and non-spherical particles, Power technol. 58, No. 1, 63-70 (1989)
[30] Doi, M.; Chen, D.: Simulation of aggregating colloids in shear flow, J. chem. Phys. 90, 5271-5279 (1989)
[31] Chang, F.; Dhir, V. K.: Turbulent flow field in tangentially injected swirl flows in tubes, Int. J. Heat fluid flow 15, No. 5, 346-356 (1994)
[32] C.L. Li, The designs of nozzles on air-jet spinning, Donghua University. Master, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.