×

New approach to modeling of temperature field in surfaced steel elements. (English) Zbl 1227.80037

Summary: In this work, a model of temperature field in a half-infinite body during surfacing was presented. Analytical solution was obtained by aggregating temperature increments caused by applying liquid metal and heat radiation of moving electrode. The assumptions were heat source of applied metal in parabolic shape in the cross-section of weld and Gaussian distribution of electric arc heat source. Computations of temperature field were carried out during surfacing of cuboidal steel element. The results were presented as temporary and maximum temperature distribution in element’s cross section. The accuracy of solution was verified comparing calculated fusion line to that obtained experimentally.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Goldak, J.; Chakravarti, A.; Bibby, M.: A new finite element model for welding heat sources, Metall. trans. 15B, 299-305 (1984)
[2] Goldak, J.; Chakravarti, A.; Bibby, M.: A double ellipsoidal finite element model for welding heat source, II W doc. (1985)
[3] Na, S. J.; Lee, S. Y.: A study on the tree-dimensional analysis of the transient temperature distribution in gas tungsten arc welding, Proc. inst. Mech. eng. 201, No. B3, 149-156 (1987)
[4] Tekriwal, P.; Mazumder, J.: Finite element analysis of three-dimensional transient heat transfer in GMA welding, Weld. J., 150s-156s (1988)
[5] Murugan, S.; Kumar, V. R.; Raj, B.; Bose, M. S. C.: Temperature distribution during multipass welding of plates, Int. J. Pres. ves. Pip. 75, 891-905 (1988)
[6] Karlsson, R. I.; Josefson, B. L.: Three dimensional finite element analysis of temperatures and stresses in a single – pass butt-welded pipe, Trans. ASME 112, 76-84 (1990)
[7] R. Parkitny, A. Pawlak, W. Piekarska, Temperature fields and stress states in welded tubes of rectangular cross section, in: Mechanical Effects of Welding, IUTAM Symposium Lulea, Sweden 1991, Springer-Verlag, Berlin Heidelberg, 1992, pp. 93 – 104.
[8] Reed, R. C.; Bhadeshia, H. K. D.: A simple model for multipass steel welds, Acta metal. Mater. 42, 3663-3678 (1994)
[9] Mundra, K.; Debroy, T.; Kelkar, K. M.: Numerical prediction of fluid flow and heat transfer in welding with a moving heat source, Numer. heat transf. 29A, 115-129 (1996)
[10] Murugan, S.; Sanjai, K. Rai; Kumar, P. V.; Jayakumar, T.; Baldev, Raj; Bose, M. S. C.: Temperature distribution and residual stresses due to multipass welding in type 304 stainless steel and low carbon steel weld pads, Int. J. Pres. ves. Pip. 78, 307-317 (2001)
[11] Komanduri, R.; Hou, Z. B.: Thermal analysis of the arc welding process: part I. General solutions, Metall. mater. Trans. 31B, 1353-1370 (2000)
[12] Jiang, W.; Yahiaoui, K.; Hall, F. R.: Finite element predictions of temperature distributions in a multipass welded piping branch junction, J. pres. Ves. technol. 127, 7-12 (2005)
[13] Deng, D.; Murakawa, H.: Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements, Comput. mater. Sci. 37, 269-277 (2006)
[14] Mahapatra, M. M.; Datta, G. L.; Pradhan, B.: Three-dimensional finite element analysis to predict the effects of shielded metal arc welding process parameters on temperature distributions and weldment zones in butt and one-sided fillet welds, Proc. inst. Mech. eng. B - J. Eng. manuf. 220, 837-845 (2006)
[15] Kumar, A.; Debroy, T.: Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions, Metall. mater. Trans. 38A, 506-519 (2007)
[16] Rosenthal, D.: Mathematical theory of heat distribution during welding and cutting, Weld. J. 5, 220s-234s (1941)
[17] Rosenthal, D.: The theory of moving sources of heat and applications to metal treatments, Trans. ASME 11, 849-866 (1946)
[18] N.N Rykalin, Tieplovyje osnovy svarki, Moskva, 1947.
[19] N.N. Rykalin, Rasczioty tieplowych processow pri svarke, Moskwa, Masgiz, 1951.
[20] Christensen, N.; Davies, V. L.; Gjermundsen, K.: Distribution of temperatures in arc welding, British weld. J. 2, 54-75 (1965)
[21] Eagar, T. W.; Tsai, N. S.: Temperature fields produced by travelling distributed heat sources, Weld. J. 12, 346s-355s (1983)
[22] Bo, K. S.; Cho, H. S.: Transient temperature distribution in arc welding of finite thickness plates, Proc. inst. Mech. eng. 204, No. B3, 175-183 (1990)
[23] Jeong, S. K.; Cho, H. S.: An analytical solution to predict the transient temperature distribution in fillet arc welds, Weld. J., 223s-232s (1997)
[24] Nguyen, N. T.; Matsuoka, K.; Suzuki, N.; Maeda, Y.: Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources, Weld. J., 265s-274s (1999)
[25] Fassani, R. N. S.: Analytical modeling of multipass welding process with distributed heat source, J. braz. Soc. mech. Sci. eng. 25, No. 3, 302-305 (2003)
[26] Nguyen, N. T.; Mai, Y. W.; Simpson, S.; Ohta, A.: Analytical approximate solution for double ellipsoidal heat source in finite thick plate, Weld. J., 82s-93s (2004)
[27] Vishnu, P. Ravi; Li, W. B.; Easterling, K. E.: Heat-flow model for pulsed welding, Mater. sci. Technol. 7, 649-659 (1991)
[28] Radaj, D.: Heat effects of welding, Temperature field, residual stress, distortion (1992)
[29] Easterling, K. E.: Modelling the weld thermal cycle and transformation behaviour in the hest affected zone, Mathematical modelling of weld phenomena, 183-200 (1993)
[30] Kidawa-Kukla, J.: Temperature distribution in a rectangular plate heated by a moving heat source, Int. J. Heat mass transf. 51, 865-872 (2008) · Zbl 1133.80005 · doi:10.1016/j.ijheatmasstransfer.2007.04.011
[31] Geissler, E.; Bergmann, H. W.: 3D temperature fields in laser transformation hardening, part I: Quasi-stationary fields, Opto elektronik mag. 4, No. 4, 396-403 (1988)
[32] Maier, C.; Schaff, P.; Gonser, U.: Calculation of the temperature profile for laser treatment of metallic samples, Mater. sci. Eng. 150A, 271-280 (1992)
[33] Van Elsen, M.; Baelmans, M.; Mercelis, P.; Kruth, J. P.: Solutions for modeling moving heat sources in a semi-infinite medium and applications to laser material processing, Int. J. Heat mass transf. 50, 4872-4882 (2007) · Zbl 1183.80070 · doi:10.1016/j.ijheatmasstransfer.2007.02.044
[34] Jeong, S. K.; Cho, H. S.: An analytical solution for transient temperature distribution in fillet arc welding including the effect of molten metal, Proc. inst. Mech. engrs. 211, 63-72 (1997)
[35] Kang, S. H.; Cho, H. S.: Analytical solution for transient temperature distribution in gas tungsten arc welding with consideration of filler wire, Proc. instsn. Engrs. 213B, 799-811 (1999)
[36] P. Hrabe, R. Choteborsky, M. Navratilova, Influence of welding parameters on geometry of weld deposit bead, Int. Conf. Economic Eng. Manufacturing Systems, Brasov, 26 – 27 November 2009, Regent 10 (2009) 3 (27) 291 – 294.
[37] M. Mysliwiec, Thermo-mechanical basis of welding, WN-T, Warszawa, 1970, pp. 64 – 67.
[38] Modenesi, P. J.; Reis, R. I.: A model for melting rate phenomena in GMA welding, J. mater. Proc. technol. 189, 199-205 (2007)
[39] Winczek, J.: Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source, Int. J. Heat mass transf. 53, 5774-5781 (2010) · Zbl 1202.80012 · doi:10.1016/j.ijheatmasstransfer.2010.07.065
[40] Klimpel, A.; Balcer, M.; Klimpel, A. S.; Rzeźnikiewicz, A.: The effect of the method and parameters in the GMA surfacing with solid wires on the quality of pudding welds and the content of the base material in the overlay, Weld. int. 20, No. 11, 845-850 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.