×

Analysis of single blow effectiveness in non-uniform parallel plate regenerators. (English) Zbl 1227.80020

Summary: Non-uniform distributions of plate spacings in parallel plate regenerators have been found to induce loss of performance. In this paper, it has been investigated how variations of three geometric parameters (the aspect ratio, the porosity, and the standard deviation of the plate spacing) affects this loss in a single blow model of a parallel-plate regenerator. Simple analytical functions for the magnitude and the time scale of the reduction of performance are presented and compared to numerical results.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer

Software:

COMSOL; Matlab
Full Text: DOI

References:

[1] R. Radebaugh, Development of the pulse tube refrigerator as an efficient and reliable cryocooler, in: Proceedings of the Institute of Refrigeration, London, 1999, pp. 11 – 31.
[2] Jain, S.; Dhar, P. L.; Kaushik, S. C.: Evaluation of liquid desiccant based evaporative cooling cycles for typical hot and humid climates, Heat recov. Syst. CHP 14, No. 6, 621-632 (1994)
[3] Reay, D. A.: A review of gas – gas heat recovery systems, Heat recov. Syst. 1, 3-41 (1980)
[4] Gschneidner, K. A.; Pecharsky, V. K.: Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int. J. Refrig. 31, No. 6, 945-961 (2008)
[5] C.R.H. Bahl, A. Smith, N. Pryds, S. Linderoth, Magnetic refrigeration – an energy efficient technology for the future, in: Proceedings Risø International Energy Conference, 2009, pp. 107 – 115.
[6] Coppage, J. E.; London, A. L.: The periodic-flow regenerator – a summary of design theory, Trans. amer. Soc. mech. Eng. 5, 779-787 (1953)
[7] Schumann, T. E. W.: Heat transfer: a liquid flowing through a porous prism, J. franklin inst. 208, No. 3, 405-416 (1929) · JFM 57.1148.07 · doi:10.1016/S0016-0032(29)91186-8
[8] Willmott, A. J.: Digital computer simulation of a thermal regenerator, Int. J. Heat mass transfer 7, 1291-1302 (1964)
[9] Shah, R. K.; Sekulic, D. P.: Fundamentals of heat exchanger design, (2003)
[10] Baclic, B. S.; Heggs, P. J.: Unified regenerator theory and reexamination of the unidirectional regenerator performance, Adv. heat transfer 20, 133-179 (1990)
[11] Jensen, J. B.; Engelbrecht, K.; Bahl, C. R. H.; Pryds, N.; Nellis, G. F.; Klein, S. A.; Elmegaard, B.: Modeling of parallel-plate regenerators with non-uniform plate distributions, Int. J. Heat mass transfer 53, 5065-5072 (2010) · Zbl 1255.80007
[12] Rao, B. P.; Kumar, P. K.; Das, S. K.: Effect of flow distribution to the channels on the thermal performance of a plate heat exchanger, Chem. eng. Process. 41, 49-58 (2002)
[13] Gedeon, D.: Flow circulations in foil-type regenerators produced by non-uniform layer spacing, Cryocoolers 13, 421-430 (2004)
[14] S. Backhaus, G.W. Swift, Fabrication and use of parallel plate regenerators in thermoacoustic engines, in: Proceedings of the 36th Intersociety Energy Conversion Conference, ASME, 2001, pp. 453 – 458.
[15] K. Engelbrecht, J.B. Jensen, C.R.H. Bahl, N. Pryds, Experiments on a modular magnetic refrigeration device, in: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, IIR/IIF, Des Moines, IA, USA, 2009, pp. 431 – 436.
[16] Comsol Multiphysics User’s Guide, ver. 3.5a, Comsol AB, Göteborg, Sweden, 2008.
[17] MATLAB, version 7.10.0, The MathWorks Inc., Natick, Massachusetts, 2010.
[18] C.R.H. Bahl, K. Engelbrecht, R. Bjørk, D. Eriksen, A. Smith, N. Pryds, Design concepts for a continuously rotating active magnetic regenerator, in: Proceedings of the Fourth International Conference on Magnetic Refrigeration at Room Temperature, IIR/IIF, Baotou, China, 2010, pp. 1 – 7.
[19] Clot, P.; Viallet, D.; Allab, F.; Kedous-Leboc, A.; Fournier, J. M.; Yonnet, J. P.: A magnet-based device for active magnetic refrigeration, IEEE trans. Mag. 39, 3349-3351 (2004)
[20] Y.B. Tang, Y.G. Chen, B.M. Wang, Q.X. Xue, M.J. Tu, A room-temperature magnetic refrigerator using heat exchange of free convection, in: A. Poredos, A. Sarlah (Eds.), Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, IIR/IIF, Portoroz, Slovenia, 2007, pp. 359 – 361.
[21] White, F. M.: Fluid mechanics, (2008)
[22] Pitman, J.: Probability, (1993) · Zbl 0779.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.