×

Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. (English) Zbl 1227.80028

Summary: Latent thermal energy storage system (LTES) is an integral part of concentrating solar power (CSP) plants for storing sun’s energy during its intermittent diurnal availability in the form of latent heat of a phase change material (PCM). The advantages of an LTES include its isothermal operation and high energy storage density, while the low thermal conductivity of the PCM used in LTES poses a significant disadvantage due to the reduction in the rate at which the PCM can be melted (charging) or solidified (discharging). The present study considers an approach to reducing the thermal resistance of LTES through embedding heat pipes to augment the energy transfer from the heat transfer fluid (HTF) to the PCM. Using a thermal resistance network model of a shell and tube LTES with embedded heat pipes, detailed parametric studies are carried out to assess the influence of the heat pipe and the LTES geometric and operational parameters on the performance of the system during charging and discharging. The physical model is coupled with a numerical optimization method to identify the design and operating parameters of the heat pipe embedded LTES system that maximizes energy transferred, energy transfer rate and effectiveness.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80M50 Optimization problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Herrmann, U.; Kearney, D. W.: Survey of thermal energy storage for parabolic trough power plants, J. solar energy eng. 124, 145-152 (2002)
[2] Zalba, B.; Marín, J. M. A. .; Cabeza, L. F.; Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer and applications, App. thermal eng. 23 (2003)
[3] Michels, H.; Pitz-Paal, R.: Cascaded latent heat storage for parabolic trough solar power plants, Solar energy 81, 829-837 (2007)
[4] Steinmann, W. -D.; Tamme, R.: Latent heat storage for solar steam systems, J. solar energy eng. 124, 011004/1-011004/5 (2008)
[5] Verma, P.; Varun; Singal, S. K.: Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material, Renew. sustain. Energy rev. 12, 999-1031 (2008)
[6] Lamberg, P.; Lehtineimi, R.; Henell, A. M.: Numerical and experimental investigation of melting and freezing processes in phase change material storage, Int. J. Thermal sci. 43, 277-287 (2004)
[7] Ng, K. W.; Gong, Z. X.; Mujumdar, A. S.: Heat transfer in free convection-dominated melting of a phase change material in horizontal annulus, Int. commun. Heat mass transfer 25, 631-640 (1998)
[8] Assis, E.; Katsman, L.; Ziskind, G.; Letan, R.: Numerical and experimental study of melting in a spherical shell, Int. J. Heat mass transfer 50, 1790-1804 (2007) · Zbl 1124.80393 · doi:10.1016/j.ijheatmasstransfer.2006.10.007
[9] Jegadheeswaran, S.; Pohekar, S. D.: Performance enhancement in latent heat thermal storage system: a review, Renew. sustain. Energy rev. 13, 2225-2244 (2009)
[10] Shatikian, V.; Ziskind, G.; Letan, R.: Numerical investigation of a PCM-based heat sink with internal fins, Int. J. Heat mass transfer 48, 3689-3706 (2005) · Zbl 1189.76706 · doi:10.1016/j.ijheatmasstransfer.2004.10.042
[11] Gharebaghi, M.; Sezai, I.: Enhancement of heat transfer in latent heat storage modules with internal fins, Numer. heat transfer part A 53, 749-765 (2008)
[12] Wang, J.; Chen, G.; Jiang, H.: Theoretical study on a novel phase change process, Int. J. Energy res. 23, 287-294 (1999)
[13] Shaikh, S.; Lafdi, K.: Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage, Energy convers. Manage. 47, 2103-2117 (2006)
[14] Kim, S.; Drzal, L. T.: High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Solar energy mater. Solar cells 93, 136-142 (2009)
[15] Guo, C.; Zhang, W.: Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system, Energy convers. Manage. 49, 919-927 (2008)
[16] Fukai, J.; Kanou, M.; Kodama, Y.; Miyatake, O.: Thermal conductivity enhancement of energy storage media using carbon fibers, Energy convers. Manage. 41, 1543-1556 (2000)
[17] Khodadadi, J. M.; Hosseinizadeh, S. F.: Nanoparticle-enhanced phase change materials with great potential for improved thermal energy storage, Int. commun. Heat mass transfer 34, 534-543 (2007)
[18] Zeng, J. L.; Sun, L. X.; Xu, F.; Tan, Z. C.; Zhang, Z. H.; Zhang, J.; Zhang, T.: Study of a PCM based energy storage system containing ag nanoparticles, J. thermal anal. Calorim. 87, 369-373 (2007)
[19] Horbaniuc, B.; Dumitrascu, G.; Popesc, A.: Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system, Energy convers. Manage. 40, 1765-1774 (1999)
[20] Liu, Z.; Wang, Z.; Ma, C.: An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: Charging only and discharging only modes, Energy convers. Manage. 47, 944-966 (2006)
[21] Lee, W. -S.; Chen, B. -R.; Chen, S. -L.: Latent heat storage in a two phase thermosyphon solar water heater, J. solar energy eng. 128, 69-76 (2006)
[22] Tardy, F.; Sami, M. S.: Thermal analysis of heat pipes during thermal storage, Appl. thermal eng. 29, 329-333 (2009)
[23] Shabgard, H.; Bergman, T. L.; Sharifi, N.; Faghri, A.: High temperature latent heat thermal energy storage using heat pipes, Int. J. Heat mass transfer 53, 2979-2988 (2010) · Zbl 1194.80065 · doi:10.1016/j.ijheatmasstransfer.2010.03.035
[24] Faghri, A.: Heat pipe science and technology, (1995)
[25] Zuo, Z. J.; Faghri, A.: A network thermodynamic analysis of the heat pipe, Int. J. Heat mass transfer 41, 1473-1484 (1998) · Zbl 0925.76819 · doi:10.1016/S0017-9310(97)00220-2
[26] T.W. Kerslake, Multi-dimensional modeling of a thermal energy storage canister, NASA Technical Memorandum 103731, Lewis Research Center, Cleveland, OH, 1991.
[27] Cao, Y.; Faghri, A.: A transient two-dimensional compressible analysis for high temperature heat pipes with pulsed heat input, Numer. heat transfer 18, 586-594 (1990)
[28] Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S.: Fundamentals of heat and mass transfer, (2007)
[29] Seban, R. A.; Bond, R.: Skin friction and heat transfer characteristics of a laminar boundary layer on a circular cylinder in axial incompressible flow, J. aerospace sci. 18, 671-675 (1951) · Zbl 0043.40004
[30] Yang, K. T.: Natural convection in enclosures, Handbook of single-phase convective heat transfer, 13.7 (1987)
[31] Thomas, L. C.: Heat transfer, (1993)
[32] Butcher, J. C.: Numerical methods for ordinary differential equations, (2003) · Zbl 1040.65057
[33] Price, H.; Lüpfert, E.; Kearney, D.; Zarza, E.; Cohen, G.; Gee, R.; Mahoney, R.: Advances in parabolic trough solar power technology, J. solar energy eng. 124, 109-125 (2002)
[34] Gill, P. E.; Murray, W.; Wright, M. H.: Practical optimization, (1981) · Zbl 0503.90062
[35] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: Numerical Analysis, in: G.A. Watson (Ed.), Lecture Notes in Mathematics, vol. 630, Springer-Verlag, 1978. · Zbl 0374.65032
[36] Han, S. P.: A globally convergent method for nonlinear programming, J. optim. Theory appl. 22, 297-313 (1977) · Zbl 0336.90046 · doi:10.1007/BF00932858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.