×

Entropy generation in Marangoni convection flow of heated fluid in an open ended cavity. (English) Zbl 1227.80034

Summary: Numerical simulations have been conducted to study the influence of thermocapillary forces on the natural convection of a Newtonian fluid contained in an open cavity. The heated molecules of the fluid are allowed to enter the cavity region to cause the convection flow. The top horizontal surface of the cavity is assumed to be flat and free. The non dimensional partial differential equations that govern the flow and thermal fields are solved using alternate direct implicit (ADI) method together with successive over relaxation (SOR) scheme. The simulation results show that the active spot of maximum entropy generation depends on the magnitudes of Grashof number and Prandtl number, respectively. Entropy generation rate increases with the increase in the Marangoni number. The entropy generation number increases from 1 to 1.5 in the range \(0 \leqslant Ma \leqslant 175\) for \(Ec = 10^{ - 4}, Gr = 2 \times 10^{3}, Pr = 0.054\). The Eckert number is considered in the range of \(0 \leqslant Ec \leqslant 0.0002\).

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R10 Free convection
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
76M20 Finite difference methods applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Drummond, J. E.; Korpella, S. A.: Natural convection in a shallow cavity, J. fluid mech. 182, 543-564 (1987)
[2] Ostrach, S.: Natural convection in enclosures, ASME J. Heat transfer 110, 1175-1190 (1988)
[3] Hossain, M. A.; Gorla, R. S. R.: Effect of viscous dissipation on mixed convection flow of water near its density maximum in a rectangular enclosure with isothermal wall, Int. J. Numer. methods heat fluid flow 16, 5-17 (2006) · Zbl 1182.76950 · doi:10.1108/09615530610636928
[4] Roache, P. J.: Computational fluid dynamics, (1982) · Zbl 0251.76002
[5] Zebib, A.; Homsy, G. M.; Meiburg, E.: High Marangoni number convection in a square cavity, Phys. fluids 28, 3467-3476 (1985) · Zbl 0586.76148 · doi:10.1063/1.865300
[6] Srinivasan, J.; Basu, B.: A numerical study of thermocapillary flow in a rectangular cavity during laser melting, Int. J. Heat mass transfer 29, 563-572 (1986) · Zbl 0592.76121 · doi:10.1016/0017-9310(86)90090-6
[7] Burgman, T. L.; Ramadhyani, S.: Combined buoyancy and thermocapillary driven convection in open square cavities, Numer. heat transfer 9, 441-451 (1986)
[8] Carpenter, B. M.; Homsy, G. M.: Combined buoyant thermocapillary flow in a cavity, J. fluid mech. 207, 121-132 (1989) · Zbl 0681.76087 · doi:10.1017/S0022112089002521
[9] Hadid, H.; Roux, B.: Buoyancy and thermocapillary driven flows in differentially heated cavities for low Prandtl number fluids, J. fluid mech. 235, 1-36 (1992) · Zbl 0744.76103 · doi:10.1017/S0022112092001009
[10] Chen, J. C.; Hwu, F. S.: Oscillatory thermocapillary flow in a rectangular cavity, Int. J. Heat mass transfer 36, 3743-3749 (1993)
[11] Rudraiah, N.; Venkatachalappa, M.; Subbaraya, C. K.: Combined surface tension and buoyancy driven convection in a rectangular open cavity in the presence of a magnetic field, Int. J. Nonlinear mech. 30, 759-770 (1995) · Zbl 0875.76583 · doi:10.1016/0020-7462(95)00026-K
[12] Sakurai, M.; Leypoldt, J.; Kuhlmann, H. C.; Rath, H. J.; Hirata, A.: Pattern formation and transient thermocapillary flow in a rectangular side-heated open cavity, Microgravity sci. Technol. 13, 30-35 (2002)
[13] Hossain, M. A.; Hafiz, M. S.; Rees, D. A. S.: Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation, Int. J. Therm. sci. 44, 676-684 (2005)
[14] Tadmor, R.: Marangoni flow revisited, J. colloid interface sci. 332, 451-454 (2009)
[15] Chan, Y. L.; Tien, C. L.: A numerical study of two-dimensional laminar natural convection in shallow open cavities, Int. J. Heat mass transfer 28, 603-612 (1985) · Zbl 0566.76076 · doi:10.1016/0017-9310(85)90182-6
[16] Vafai, K.; Ettefagh, J.: Thermal and fluid flow instabilities in buoyancy driven flows in open-ended cavities, Int. J. Heat mass transfer 33, 2329-2344 (1990)
[17] Angirasa, D.; Pourquie, M. J. B.M.; Nieuwstadt, F. T. M.: Numerical study of transient and steady laminar buoyancy-driven flows and heat absorption in a square open cavity, Numer. heat transfer 22, 223-239 (1992)
[18] Angirasa, D.; Eggels, J. G. M.; Nieuwstadt, F. T. M.: Numerical simulations of transient natural convection from an isothermal cavity open on a side, Numer. heat transfer 28, 755-768 (1995)
[19] Magherbi, M.; Abbassi, H.; Ben Brahim, A.: Entropy generation at the onset of natural convection, Int. J. Heat mass transfer 46, 3441-3450 (2003) · Zbl 1049.76602 · doi:10.1016/S0017-9310(03)00133-9
[20] Erbay, L. B.; Altac, Z.; Sulus, B.: An analysis of the entropy generation in a square enclosure, Entropy 5, 496-505 (2003)
[21] Haddad, O.; Abuzaid, M.; Al-Nimr, M.: Entropy generation due to laminar incompressible forced convection flow through parallel plates microchannel, Entropy 6, 413-426 (2004) · Zbl 1130.76421 · doi:10.3390/e6050413
[22] Mahmud, S.; Fraser, R. A.: Magnetohydrodynamic free convection and entropy generation in a square porous cavity, Int. J. Heat mass transfer 47, 3245-3256 (2004) · Zbl 1079.76643 · doi:10.1016/j.ijheatmasstransfer.2004.02.005
[23] Hooman, K.; Ejlali, A.: Second law analysis of laminar flow in a channel filled with saturated porous media: a numerical solution, Entropy 7, 300-307 (2005) · Zbl 1135.76311 · doi:10.3390/e7040300
[24] Costa, V. A. F.: Thermodynamics of natural convection in enclosures with viscous dissipation, Int. J. Heat mass transfer 48, 2333-2341 (2005) · Zbl 1189.76523 · doi:10.1016/j.ijheatmasstransfer.2005.01.004
[25] Mourad, M.; Hassen, A.; Nejib, H.; Ammar, B. B.: Second law analysis in convective heat and mass transfer, Entropy 8, 1-17 (2006)
[26] Ilis, G. G.; Mobedia, M.; Sunden, B.: Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls, Int. commun. Heat mass transfer 35, 696-703 (2008)
[27] Oliveski, R. C.; Macagnan, M. H.; Copetti, J. P.: Entropy generation and natural convection in rectangular cavities, Appl. therm. Eng. 29, 1417-1425 (2009)
[28] El Jery, A.; Hidouri, N.; Mourad, M.; Brahim, A. B.: Effect of an external oriented magnetic field on entropy generation in natural convection, Entropy 12, 1391-1417 (2010)
[29] Pop, I.; Postelnicu, A.; Grosan, T.: Thermosolutal Marangoni forced convection boundary layers, Meccanica 36, 555-571 (2001) · Zbl 1060.76109 · doi:10.1023/A:1017431224943
[30] Chamkha, A. J.; Pop, I.; Takhar, H. S.: Marangoni mixed convection boundary layer flow, Meccanica 41, 219-232 (2006) · Zbl 1158.76430 · doi:10.1007/s11012-005-3352-y
[31] Martynenko, O. G.; Khramtsov, P. P.: Free-convective heat transfer, (2005)
[32] , Convective heat transfer 1 (1989)
[33] Bejan, A.: Convection heat transfer, (1995) · Zbl 0599.76097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.