×

Calculations of gas thermal radiation transfer in one-dimensional planar enclosure using LBL and SNB models. (English) Zbl 1227.80014

Summary: Thermal radiation transfer in one-dimensional enclosure between two parallel plates filled with real gases, namely CO\(_{2}\), H\(_{2}\)O, or their mixtures, was calculated using the line-by-line approach and the statistical narrow-band model. Line-by-line calculations were carried out using the HITEMP1995, HITRAN2004, HITRAN2008, HITEMP2010, and updated CDSD-1000 databases. This study demonstrates the importance of spectral database to the accuracy of line-by-line calculations through a systematic comparison of line-by-line results using different databases. Calculations of the statistical narrow-band model were conducted using the EM2C narrow-band database. The strong dependence of line-by-line results on the spectral database was demonstrated through several gas radiation transfer problems in planar-plate enclosure containing real gases of both isothermal or non-isothermal and uniform or non-uniform concentrations at 1 atm. Fairly significant differences were found between the line-by-line results using the HITEMP2010 database and those using older databases. Very good agreement in both the wall heat flux and the radiative source term was observed between the line-by-line results using the HITEMP2010 database and the results of the statistical narrow-band model in all the cases tested, confirming the EM2C narrow-band parameters for both H\(_{2}\)O and CO\(_{2}\) are accurate. For cases involving CO\(_{2}\) the line-by-line results using the HITEMP2010 database are in excellent agreement with those using the updated CDSD-1000 databases. The line-by-line results based on the HITEMP2010 database should be used as benchmark solutions to evaluate the accuracy of other approximate models.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

HITEMP; HITRAN; GENSPECT

References:

[1] Terry, W.; Liu, Y.; Spero, C.; Elliott, L.; Khare, S.; Rathnam, R.; Zeenathal, F.; Moghtaderi, B.; Buhre, B.; Sheng, C.; Gupta, R.; Yamada, T.; Makino, K.; Yu, J.: An overview on oxyfuel coal combustion – state of the art research and technology development, Chem. eng. Res. des. 87, 1003-1016 (2009)
[2] Krishnamoorthy, G.; Sami, M.; Orsino, S.; Perera, A.; Shahnam, M.; Huckaby, E.: Radiation modeling in oxy-fuel combustion scenarios, Int. J. Comput. fluid D 24, 69-82 (2010) · Zbl 1267.76128
[3] Edwards, D. K.: Molecular gas band radiation, Advances in heat transfer 12, 115-193 (1976)
[4] Viskanta, R.; Mengüç, M. P.: Radiation heat transfer in combustion systems, Prog. energy combust. Sci. 13, 97-160 (1987)
[5] Modest, M.: Radiative heat transfer, (2003) · Zbl 1042.76592
[6] Siegel, R.; Howell, J. R.: Thermal radiation heat transfer, (2002)
[7] Goody, R. M.: A statistical model for water-vapor absorption, Quart. J. R. meteorol. Soc. 78, 165-169 (1952)
[8] Malkmus, W.: Random Lorentz band model with exponential-tailed S - 1 line-intensity distribution function, J. opt. Soc. am. 57, 323-329 (1967)
[9] F. André, R. Vaillon, A simple and accurate method to derive SNB parameters for the radiative properties of gases, in: D. Lemonnier, N. Selçuk, P. Lyabaert (Eds.), Proceedings of Eurotherm78-Computational Thermal Radiation in Participating Media II, Poitiers, Lavoisier, Paris, 5 – 7 April 2006, pp.167 – 176.
[10] Edwards, D. K.; Balakrishnan, A.: Thermal radiation by combustion gases, Int. J. Heat mass transfer 16, 25-40 (1973)
[11] Chandrasekhar, S.: Radiative transfer, (1960) · Zbl 0037.43201
[12] Hammersley, J. M.; Handscomb, D. C.: Monte Carlo methods, (1964) · Zbl 0121.35503
[13] Howell, J. R.; Perlmutter, M.: Monte Carlo solution of thermal transfer through radiant media between gray walls, J. heat transfer 86, 116-122 (1964)
[14] Hottel, H. C.; Cohen, E. S.: Radiant heat exchange in a gas-filled enclosure: allowance for nonuniformity of gas temperature, Alche J. 4, 3-14 (1958)
[15] H. C. Zhou, Q. Cheng, The DRESOR method for the solution of the radiative transfer equation in gray plane-parallel media, in: M.P. Mengüç, N. Selçuk (Eds.), Proceedings of the Fourth International Symposium on Radiative Transfer, Istanbul, Turkey, 2004, pp. 181 – 190.
[16] Lacis, A.; Oinas, V.: A description of the correlated-k distribution method for modeling non-gray gaseous absorption, thermal emission and multiple scattering in vertically inhomogeneous atmospheres, J. geophys. Res. 96, 9027-9063 (1991)
[17] Liu, F.; Smallwood, G. J.; Gülder, Ö.L.: Application of the statistical narrow-band correlated – k method to non-grey gas radiation in CO2 – H2 O mixtures: approximate treatments of overlapping bands, J. quant. Spectrosc. radiat. Transfer 68, 401-417 (2001)
[18] Marin, O.; Buckius, R. O.: Wide band correlated-k approach to thermal radiative transport in nonhomogeneous media, J. heat transfer 119, 719-729 (1997)
[19] Ströhle, J.; Coelho, P. J.: On the application of the exponential wide band model to the calculation of radiative heat transfer in one- and two-dimensional enclosures, Int. J. Heat mass transfer 45, 2129-2139 (2002) · Zbl 1011.80001 · doi:10.1016/S0017-9310(01)00311-8
[20] Cayan, F. N.; Selçuk, N.: The method of lines solution of discrete ordinates method for non-grey media, J. quant. Spectrosc. radiat. Transfer 104, 228-237 (2007)
[21] Hottel, H. C.; Sarofim, A. F.: Radiative transfer, (1967)
[22] Modest, M. F.: The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer, J. heat transfer 113, 650-656 (1991)
[23] Soufiani, A.; Djavdan, E.: A comparison between weighted sum of gray gases and statistical narrow band radiation models for combustion applications, Combust. flame 97, 240-250 (1994)
[24] M.K. Denison, A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers, Ph.D. Thesis, Department of Mechanical Engineering, Brigham Young University, 1994.
[25] Solovjov, V. P.; Webb, B. W.: An efficient method for modeling radiative transfer in multicomponent gas mixtures with soot, J. heat transfer 123, 450-457 (2001)
[26] Solovjov, V. P.; Webb, B. W.: Multilayer modeling of radiative transfer by SLW and CW methods in non-isothermal gaseous medium, J. quant. Spectrosc. radiat. Transfer 109, 245-257 (2008)
[27] Modest, M. F.; Zhang, H.: The full-spectrum correlated-k distribution for thermal radiation from molecular gas – particulate mixtures, J. heat transfer 124, 30-38 (2002)
[28] Zhang, H.; Modest, M. F.: A multi-scale full-spectrum correlated-k distribution for radiative heat transfer in inhomogeneous gas mixtures, J. quant. Spectrosc. radiat. Transfer 73, 349-360 (2002)
[29] Pierrot, L.; Rivière, P.; Soufiani, A.; Taine, J.: A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases, J. quant. Spectrosc. radiat. Transfer 62, 609-624 (1999)
[30] Pierrot, L.; Soufiani, A.; Taine, J.: Accuracy of narrow-band and global models for radiative transfer in H2 O, CO2, and H2O – CO2 mixtures at high temperature, J. quant. Spectrosc. radiat. Transfer 62, 523-548 (1999)
[31] Quine, B. M.; Drummond, J. R.: GENSPECT: a line-by-line code with selectable interpolation error tolerance, J. quant. Spectrosc. radiat. Transfer 74, 147-165 (2002)
[32] Rothman, L. S.; Rinsland, C. P.; Goldman, A.; Massie, S. T.; Edwards, D. P.; Flaud, J. M.; Perrin, A.; Camy-Peyret, C.; Dana, V.; Mandin, J. Y.; Schroeder, J.; Mccann, A.; Gamache, R. R.; Wattson, R. B.; Yoshino, K.; Chance, K. V.; Jucks, K. W.; Brown, L. R.; Nemtchinov, V.; Varanasi, P.: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition, J. quant. Spectrosc. radiat. Transfer 60, 665-710 (1998)
[33] Rothman, L. S.; Jacquemart, D.; Barbe, A.; Benner, D. Chris; Birk, M.; Brown, L. R.; Carleer, M. R.; Jr., C. Chackerian; Chance, K.; Coudert, L. H.; Dana, V.; Devi, V. M.; Flaud, J. -M.; Gamache, R. R.; Goldman, A.; Hartmann, J. -M.; Jucks, K. W.; Maki, A. G.; Mandin, J. -Y.; Massie, S. T.; Orphal, J.; Perrin, A.; Rinsland, C. P.; Smith, M. A. H.; Tennyson, J.; Tolchenov, R. N.; Toth, R. A.; Vander Auwera, J.; Varanasi, P.; Wagner, G.: The HITRAN 2004 molecular spectroscopic database, J. quant. Spectrosc. radiat. Transfer 96, 139-204 (2005)
[34] Rothman, L. S.; Gordon, I. E.; Barbe, A.; Benner, D. Chris; Bernath, P. F.; Birk, M.; Boudon, V.; Brown, L. R.; Campargue, A.; Champion, J. -P.; Chance, K.; Coudert, L. H.; Dana, V.; Devi, V. M.; Fally, S.; Flaud, J. -M.; Gamache, R. R.; Goldman, A.; Jacquemart, D.; Kleiner, I.; Lacome, N.; Lafferty, W. J.; Mandin, J. -Y.; Massie, S. T.; Mikhailenko, S. N.; Miller, C. E.; Moazzen-Ahmadi, N.; Naumenko, O. V.; Nikitin, A. V.; Orphal, J.; Perevalov, V. I.; Perrin, A.; Predoi-Cross, A.; Rinsland, C. P.; Rotger, M.; Simeckova, M.; Smith, M. A. H.; Sung, K.; Tashkun, S. A.; Tennyson, J.; Toth, R. A.; Vandaele, A. C.; Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. quant. Spectrosc. radiat. Transfer 110, 533-572 (2009)
[35] Rothman, L. S.; Wattson, R. B.; Gamache, R. R.; Schroeder, J.; Mccann, A.: HITRAN, HAWKS and HITEMP high-temperature molecular database, Proc. soc. Photo-opt. Instrum. eng. 2471, 105-111 (1995)
[36] Rothman, L. S.; Gordon, I. E.; Barber, R. J.; Dothe, H.; Gamache, R. R.; Goldman, A.; Perevalov, V. I.; Tashkun, S. A.; Tennyson, J.: HITEMP, the high-temperature molecular spectroscopic database, J. quant. Spectrosc. radiat. Transfer 111, 2139-2150 (2010)
[37] S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva, CDSD-296, the carbon dioxide spectroscopic databank: version for atmospheric applications, in: XIV Symposium on High Resolution Molecular Spectroscopy, Krasnoyarsk, Russia, July 6 – 11, 2003.
[38] Tashkun, S. A.; Perevalov, V. I.; Teffo, J. -L.; Bykov, A. D.; Lavrentieva, N. N.: CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, J. quant. Spectrosc. radiat. Transfer 82, 165-196 (2003)
[39] S. A. Tashkun, V. I. Perevalov, J. L. Teffo, CDSD-296: the high-precision carbon dioxide spectroscopic databank: version for atmospheric applications, in: S. Agnes Perrin, Najate Ben Sari-Zizi, Jean Demaison (Eds.), Remote Sensing of the Atmosphere for Environmental Security, Springer, Netherlands, 2006, pp. 161 – 169 (The 2008 updated version was used, available at: ftp.iao.ru/pub/CDSD-2008/296).
[40] Tashkun, S. A.; Perevalov, V. I.; Teffo, J. L.; Bykov, A. D.; Lavrentieva, N. N.: CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, J. quant. Spectrosc. radiat. Transfer 82, 65-196 (2003)
[41] Taine, J.: A line by line calculation of low-resolution radiative properties of CO2 – CO-transparent nonisothermal gas mixtures up to 3000K, J. quant. Spectrosc. radiat. Transfer 30, 371-379 (1983)
[42] Sparks, L.: Efficient line-by-line calculation of absorption coefficients to high numerical accuracy, J. quant. Spectrosc. radiat. Transfer 57, 631-650 (1997)
[43] Liu, F.; Becker, H. A.; Pollard, A.: Spatial differencing schemes of the discrete-ordinates method, Numer. heat transfer B 30, 23-43 (1996)
[44] L.S. Rothman, Spectroscopic archives and transmission codes for the atmosphere and their application to laser sensing, in: Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (CD) (Optical Society of America, 2008), paper LMA3.
[45] Rothman, L. S.: The evolution and impact of the HITRAN molecular spectroscopic database, J. quant. Spectrosc. radiat. Transfer 111, 1565-1567 (2010)
[46] C.B. Ludwig, W. Malkmus, J.E. Reardon, J.A.L. Thomson, Handbook of Infrared Radiation from Combustion Gases, NASA, Washington, DC, 1973, Rep. SP3080.
[47] Soufiani, A.; Taine, J.: High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO, and correlated k model for H2O and CO2, Int. J. Heat mass transfer 40, 987-991 (1997)
[48] Rothman, L. S.; Gamache, R. R.; Tipping, R. H.; Rinsland, C. P.; Smith, M. A. H.; Benner, D. Chris; Devi, V. Malathy; Flaud, J. M.; Camy-Peyret, C.; Perrin, A.; Goldman, A.; Massie, S. T.; Brown, L. R.: The HITRAN molecular data base: editions of 1991 and 1992, J. quant. Spectrosc. radial. Transfer 48, 469-507 (1992)
[49] Liu, F.; Gülder, Ö.L.; Smallwood, G. J.; Ju, Y.: Non-grey gas radiative transfer analyses using the statistical narrow-band model, Int. J. Heat mass transfer 41, 2227-2236 (1998) · Zbl 0925.76471 · doi:10.1016/S0017-9310(97)00267-6
[50] Marakis, J. G.: Application of narrow and wide band models for radiative transfer in planar media, Int. J. Heat mass transfer 44, 131-142 (2001) · Zbl 1007.76073 · doi:10.1016/S0017-9310(00)00090-9
[51] Godson, W. L.: The evaluation of infrared radiation fluxes due to atmospheric water vapor, Quart. J. R. meteorol. Soc. 79, 367-379 (1953)
[52] Kim, T. K.; Menart, J. A.; Lee, H. S.: Nongray radiative gas analyses using the S – N discrete ordinates method, J. heat transfer 113, 946-952 (1991)
[53] Bharadwaj, S. P.; Modest, M. F.: Medium resolution transmission measurements of CO2 at high temperature — an update, J. quant. Spectrosc. radiat. Transfer 103, 146-155 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.