×

Contact conductance of rough surfaces composed of modified RMD patches. (English) Zbl 1227.74040

Summary: The dependence of the contact conductance of self-affine rough surfaces on the applied pressure is studied using the electric-mechanical analogy which relates the contact conductance to the normal stiffness. According to dimensional analysis arguments, an efficient dimensionless formulation is proposed which minimizes the number of dimensionless variables governing the phenomenon. Assuming incomplete similarity in the dimensionless pressure, a power-law dependence between contact conductance and mean pressure is proposed. This is confirmed by earlier semi-empirical correlations that are recovered as special cases of the proposed formulation. To compute the exponent \(\beta \) of the power-law, and relate it to the morphological properties of the surfaces, we numerically test self-affine rough surfaces composed of random midpoint displacement (RMD) patches. Such patches are generated using a modified RMD algorithm in order to decouple the effect of the long wavelength cut-off from that due to microscale roughness. Numerical results show that the long wavelength cut-off has an important effect on the contact conductance, whereas the sampling interval and the fractal dimension are less important. The effect of elastic interaction between asperities has also been quantified and it significantly influences the predicted power-law exponent \(\beta \).

MSC:

74M15 Contact in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] Holm, R.: Electric contact. Theory and applications, (1958)
[2] Cooper, M. G.; Mikic, B. B.; Yovanovich, M. M.: Thermal contact conductance, Int. J. Heat mass transfer 12, 279-300 (1968)
[3] Milanez, F. H.; Yovanovich, M. M.; Culham, J. R.: Effect of surface asperity truncation on thermal contact conductance, IEEE trans. Compon. packag. Technol. 26, 48-54 (2003)
[4] M.R. Sridhar, M.M. Yovanovich, Contact conductance correlations based on Greenwood and Williamson surface model, in: ASME National Heat Transfer Conference, Thermal Contact Resistance Session, Houston, Texas, ASME, 1996, pp. 1 – 11.
[5] Sridhar, M. R.; Yovanovich, M. M.: Elastoplastic contact conductance model for isotropic, conforming rough surfaces and comparison with experiments, J. heat transfer 118, 3-16 (1996)
[6] Bahrami, M.; Culham, J. R.; Yovanovich, M. M.; Schneider, G. E.: Thermal contact resistance of nonconforming rough surfaces, part 2: thermal model, J. thermophys. Heat transfer 18, 218-227 (2004)
[7] M.M. Yovanovich, A.A. Hegazy, J. De Vaal, Hardness distribution effects upon contact, gap and joint conductances, AIAA Paper, St. Louis, Missouri, (82-0887), 1982.
[8] M.M. Yovanovich, A.A. Hegazy, V.W. Antonetti, Experimental verification of contact conductance models based upon distributed surface micro-hardness, AIAA Paper, Reno, NV, (83-0532), 1983.
[9] Ciavarella, M.; Dibello, S.; Demelio, G.: Conductance of rough random profiles, Int. J. Solids struct. 45, 879-893 (2008) · Zbl 1167.74513 · doi:10.1016/j.ijsolstr.2007.09.009
[10] Greenwood, J. A.; Williamson, J. B. P.: Contact of nominally flat surfaces, Proc. roy. Soc. lond. Ser. A 295, 300-319 (1966)
[11] Bush, A. W.; Gibson, R. D.: A theoretical investigation of thermal contact conductance, Appl. energy 5, 11-22 (1979)
[12] Lorenz, B.; Persson, B. N. J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory, J. phys. Condens. matter 21, 015003 (2008)
[13] Barber, J. R.: Bounds on the electrical resistance between contacting elastic rough bodies, Proc. roy. Soc. lond. Ser. A 459, 53-66 (2003) · Zbl 1050.74038 · doi:10.1098/rspa.2002.1038
[14] Boyer, L.: Contact resistance calculations: generalizations of greenwood’s formula including interface films, IEEE, trans. Comput. packag. Technol. 24, 50-58 (2001)
[15] Greenwood, J. A.; Wu, J. J.: Surface roughness and contact: an apology, Meccanica 36, 617-630 (2001) · Zbl 1045.74008 · doi:10.1023/A:1016340601964
[16] Nayak, P. R.: Random process model of rough surfaces, ASME J. Lubr. technol. 93, 398-407 (1971)
[17] Buckingham, E.: Model experiments and the form of empirical equations, ASME trans. 37, 263-296 (1915)
[18] Sridhar, M. R.; Yovanovich, M. M.: Review of elastic and plastic contact conductance models: comparison with experiments, J. thermophys. Heat transfer 8, No. 4, 633-640 (1994)
[19] Sayles, R. S.; Thomas, T. R.: The spatial representation of surface roughness by means of the structure function: a practical alternative to correlation, Wear 42, 263-276 (1977)
[20] Zavarise, G.; Borri-Brunetto, M.; Paggi, M.: On the resolution dependence of micromechanical contact models, Wear 262, 42-54 (2007)
[21] Barenblatt, G. I.: Scaling, self-similarity and intermediate asymptotics, (1996) · Zbl 0907.76002
[22] Mikic, B. B.: Thermal contact conductance: theoretical considerations, Int. J. Heat mass transfer 17, 205-214 (1974)
[23] A. Blahey, J.L. Tevaarwerk, M.M. Yovanovich, Contact conductance correlations of elastically deforming flat rough surfaces, AIAA Paper No. 80-1470 presented at the AIAA 5th Thermo-physics Conference, Snowmass, Colorado, 1980.
[24] Ciavarella, M.; Greenwood, J. A.; Paggi, M.: Inclusion of interaction in the greenwood & williamson contact theory, Wear 265, 729-734 (2008)
[25] Borri-Brunetto, M.; Carpinteri, A.; Chiaia, B.: Scaling phenomena due to fractal contact in concrete and rock fractures, Int. J. Fract. 95, 221-238 (1999)
[26] Hyun, S.; Pei, L.; Molinari, J. -F.; Robbins, M. O.: Finite-element analysis of contact between elastic self-affine surfaces, Phys. rev. E 70, 026117 (2004)
[27] Nakamura, M.: Constriction resistance of conducting spots by the boundary element method, IEEE trans. Compon. hybrids manuf. Technol. 16, 339-343 (1993)
[28] Greenwood, J. A.; Tripp, J. H.: The elastic contact of rough spheres, J. appl. Mech. 34, 153-159 (1967)
[29] Bahrami, M.; Culham, J. R.; Yovanovich, M. M.; Schneider, G. E.: Thermal contact resistance of nonconforming rough surfaces, part 1: contact mechanics model, J. thermophys. Heat transfer 18, 209-217 (2004)
[30] Peitgen, H. O.; Saupe, D.: The science of fractal images, (1988) · Zbl 0683.58003
[31] Feder, J.: Fractals, (1988) · Zbl 0648.28006
[32] Ciavarella, M.; Delfine, V.; Demelio, G.: A ”re-vitalized” greenwood & williamson model of elastic contact between fractal surfaces, J. mech. Phys. solids 54, 2569-2591 (2006) · Zbl 1189.74089
[33] Johnson, K. L.: Contact mechanics, (1985) · Zbl 0599.73108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.