×

Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability. (English) Zbl 1220.81109

Summary: The full spectrum and eigenfunctions of the quantum version of a nonlinear oscillator defined on an \(N\)-dimensional space with nonconstant curvature are rigorously found. Since the underlying curved space generates a position-dependent kinetic energy, three different quantization prescriptions are worked out by imposing that the maximal superintegrability of the system has to be preserved after quantization. The relationships among these three Schrödinger problems are described in detail through appropriate similarity transformations. These three approaches are used to illustrate different features of the quantization problem on \(N\)-dimensional curved spaces or, alternatively, of position-dependent mass quantum Hamiltonians. This quantum oscillator is, to the best of our knowledge, the first example of a maximally superintegrable quantum system on an \(N\)-dimensional space with nonconstant curvature.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35Q55 NLS equations (nonlinear Schrödinger equations)
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O., Phys. Lett. B, 652, 376 (2007) · Zbl 1248.37052
[2] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O., Ann. Phys., 324, 1219 (2009) · Zbl 1173.83006
[3] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O., Phys. D, 237, 505 (2008) · Zbl 1141.37023
[4] Fradkin, D. M., Amer. J. Phys., 33, 207 (1965) · Zbl 0128.45601
[5] Iwai, T.; Uwano, Y.; Katayama, N., J. Math. Phys., 37, 608 (1996) · Zbl 0899.70007
[6] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.; Riglioni, D., Phys. Lett. A, 375, 1431 (2011) · Zbl 1242.81084
[7] Wald, R. M., General Relativity (1984), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0549.53001
[8] Landsman, N. P., Mathematical Topics Between Classical and Quantum Mechanics (1998), Springer: Springer New York · Zbl 0923.00008
[9] Liu, Z. J.; Qian, M., Trans. Amer. Math. Soc., 331, 321 (1992) · Zbl 0755.58024
[10] Baer, C.; Dahl, M., Geom. Funct. Anal., 13, 483 (2003) · Zbl 1030.58003
[11] Paneitz, S. M., SIGMA, 4, 036 (2008) · Zbl 1145.53053
[12] G. Bastard, Wave mechanics applied to semiconductor heterostructures, LesÉditions de Physique, Paris, 1988.; G. Bastard, Wave mechanics applied to semiconductor heterostructures, LesÉditions de Physique, Paris, 1988.
[13] Harrison, P., Quantum wells, wires and dots (2009), Wiley: Wiley New York
[14] von Roos, O., Phys. Rev. B, 27, 7547 (1983)
[15] Lévy-Leblond, J. M., Phys. Rev. A, 52, 1845 (1995)
[16] Quesne, C.; Tkachuk, V. M., J. Phys. A: Math. Gen., 37, 4267 (2004) · Zbl 1063.81070
[17] Quesne, C., Ann. Phys., 321, 1221 (2006) · Zbl 1092.81016
[18] Koenigs, G., (Darboux, G., Leçons sur la théorie générale des surfaces, vol. 4 (1972), Chelsea: Chelsea New York), 368
[19] Kalnins, E. G.; Kress, J. M.; Miller, W.; Winternitz, P., J. Math. Phys., 44, 5811 (2003) · Zbl 1063.37050
[20] Iwai, T.; Katayama, N., J. Math. Phys., 36, 1790 (1995) · Zbl 0832.70010
[21] Zwanziger, D., Phys. Rev., 176, 1480 (1968)
[22] McInstosh, H. V.; Cisneros, A., J. Math. Phys., 11, 896 (1970)
[23] Manton, N. S., Phys. Lett. B, 110, 54 (1982) · Zbl 1190.81087
[24] Atiyah, M. F.; Hitchin, N. J., Phys. Lett. A, 107, 21 (1985) · Zbl 1177.53069
[25] Gibbons, G. W.; Manton, N. S., Nucl. Phys. B, 274, 183 (1986)
[26] Fehér, L. G.; Horváthy, P. A., Phys. Lett. B, 183, 182 (1987)
[27] Gibbons, G. W.; Ruback, P. J., Commun. Math. Phys., 115, 267 (1988) · Zbl 0684.53074
[28] Bini, D.; Cherubini, C.; Jantzen, R. T., Class. Quant. Grav., 19, 5481 (2002) · Zbl 1039.83007
[29] Bini, D.; Cherubini, C.; Jantzen, R. T.; Mashhoon, B., Class. Quant. Grav., 20, 457 (2003) · Zbl 1047.83006
[30] Perlick, V., Class. Quant. Grav., 9, 1009 (1992) · Zbl 0755.53057
[31] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O., Class. Quant. Grav., 25, 165005 (2008) · Zbl 1147.83006
[32] Bertrand, J., C. R. Acad. Sci. Paris, 77, 849 (1873) · JFM 05.0470.01
[33] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O., Commun. Math. Phys., 290, 1033 (2009) · Zbl 1269.70017
[34] Ngome, J. P., J. Math. Phys., 50, 122901 (2009) · Zbl 1372.53079
[35] A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni, Int. J. Theor. Phys., 2011. doi:10.1007/s10773-011-0750-x; A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni, Int. J. Theor. Phys., 2011. doi:10.1007/s10773-011-0750-x
[36] Hietarinta, J.; Grammaticos, B.; Dorizzi, B.; Ramani, A., Phys. Rev. Lett., 53, 1707 (1984)
[37] Kalnins, E. G.; Kress, J. M.; Miller, W., J. Math. Phys., 46, 053510 (2005) · Zbl 1110.37055
[38] Kalnins, E. G.; Kress, J. M.; Miller, W., J. Math. Phys., 47, 043514 (2006) · Zbl 1112.37058
[39] Kalnins, E. G.; Miller, W.; Post, S., J. Phys. A: Math. Theor., 43, 035202 (2010) · Zbl 1214.37038
[40] Ballesteros, A.; Ragnisco, O., J. Phys. A: Math. Gen., 31, 3791 (1998) · Zbl 0906.35100
[41] Ragnisco, O.; Ballesteros, A.; Herranz, F. J.; Musso, F., SIGMA, 3, 026 (2007) · Zbl 1138.37039
[42] Ballesteros, A.; Blasco, A.; Herranz, F. J.; Musso, F.; Ragnisco, O., J. Phys.: Conf. Ser., 175, 012004 (2009)
[43] Strichartz, R. S., J. Funct. Anal., 52, 48 (1983) · Zbl 0515.58037
[44] Shifman, M. A.; Turbiner, A. V., Commun. Math. Phys., 126, 347 (1989) · Zbl 0696.35183
[45] Donnelly, H.; Li, P., Duke Math. J., 46, 497 (1979) · Zbl 0416.58025
[46] Donnelly, H., Mich. Math. J., 28, 53 (1981) · Zbl 0463.53028
[47] Dunford, N.; Schwartz, J. T., Linear Operators II (1988), Wiley: Wiley New York
[48] Koc, R.; Koca, M.; Sahinoglu, G., Eur. Phys. J. B, 48, 583 (2005)
[49] Schmidt, A. G.M., Phys. Lett. A, 353, 459 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.