×

Functional renormalization group for quantized anharmonic oscillator. (English) Zbl 1220.81095

Summary: Functional renormalization group methods formulated in the real-time formalism are applied to the \(O(N)\) symmetric quantum anharmonic oscillator, considered as a \(0+1\)-dimensional quantum field-theoric model, in the next-to-leading order of the gradient expansion of the one- and two-particle irreducible effective action. The infrared scaling laws and the sensitivity-matrix analysis show the existence of only a single, symmetric phase. The Taylor expansion for the local potential converges fast while it is found not to work for the field-dependent wavefunction renormalization, in particular for the double-well bare potential. Results for the gap energy for the bare anharmonic oscillator potential hint on improving scheme-independence in the next-to-leading order of the gradient expansion, although the truncated perturbation expansion in the bare quartic coupling provides strongly scheme-dependent results for the infrared limits of the running couplings.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81Q15 Perturbation theories for operators and differential equations in quantum theory
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)

References:

[1] Zappala, D., Phys. Lett. A, 290, 35 (2001) · Zbl 1021.81012
[2] Hedden, R.; Meden, V.; Pruschke, Th.; Schönhammer, K., J. Phys.: Cond. Matter, 16, 5279 (2004)
[3] Huang, S.; Agarwal, G. S., Phys. Rev., A80, 033807 (2009)
[4] V. Barsan, 0912.1988 [cond-mat.stat-mech].; V. Barsan, 0912.1988 [cond-mat.stat-mech].
[5] Scalapino, D. J.; Sears, M.; Ferrell, R. A., Phys. Rev., B6, 3409 (1972)
[6] Krumhansl, J. A.; Schrieffer, J. R., Phys. Rev., B11, 3535 (1975)
[7] Kowalewska-Kudłaszyk, A.; Kalaga, J. K.; Leoński, W., Phys. Lett., A373, 1334 (2009) · Zbl 1228.81172
[8] Gevorgyan, T. V.; Shahinyan, A. R.; Kryuchkyan, G. Yu., Phys. Rev., A79, 053828 (2009)
[9] Skokos, Ch.; Krimer, D. O.; Komineas, S.; Flach, S., Phys. Rev., E79, 056211 (2009)
[10] Kingsbury, K.; Amey, C.; Kapulkin, A.; Pattanayak, A., Phys. Rev. Lett., 102, 119402 (2009)
[11] Bender, C. M.; Wu, T. T., Phys. Rev., 184, 1231 (1969)
[12] Bender, C. M.; Wu, T. T., Phys. Rev., D7, 1620 (1973)
[13] Bender, C. M.; Cooper, F.; Guralnik, G. S.; Sharp, D. H., Phys. Rev., D19, 1865 (1979)
[14] Bender, C. M.; Dunne, G. V., Phys. Rev., D40, 3504 (1989)
[15] Auberson, G.; Peyranre, M. C., Phys. Rev., A65, 032120 (2002)
[16] Fessatidis, V.; Mancini, J. D.; Prie, J. D.; Zhou, Y.; Majewski, A., Phys. Rev., A60, 1713 (1999)
[17] Jáuregui, R.; Récamier, J., Phys. Rev., A46, 2240 (1992)
[18] Handy, C. R., Phys. Rev., A46, 1663 (1992)
[19] Agrawal, R. K.; Varma, V. S., Phys. Rev., A49, 5089 (1994)
[20] Hatsuda, T.; Kunihiro, T.; Tanaka, T., Phys. Rev. Lett., 78, 3229 (1997)
[21] Meißner, H.; Steinborn, E. O., Phys. Rev., A56, 1189 (1997)
[22] Kashiwa, T., Phys. Rev. D, 59, 085002 (1999)
[23] Sangchul, Oh., Phys. Rev., A77, 012326 (2008)
[24] Egusquiza, I. L.; Basagoiti, M. A.V., Phys. Rev., A57, 1586 (1998)
[25] Yukalov, V. I.; Yukalova, E. P.; Gluzman, S., Phys. Rev., A58, 96 (1998)
[26] Frasca, M., Nuovo Cim., B117, 867 (2002)
[27] Martin-Delgado, M. A.; Sierra, G., Phys. Rev. Lett., 83, 1514 (1999)
[28] Kapoyannis, A. S.; Tetradis, N., Phys. Lett., A276, 225 (2000) · Zbl 1274.81172
[29] Aoki, K-I; Horikoshi, A.; Taniguchi, M.; Terao, H., Prog. Theor. Phys., 108, 571 (2002) · Zbl 1022.81043
[30] H. Gies, <http://arxiv.org/abs/hep-ph/0611146>; H. Gies, <http://arxiv.org/abs/hep-ph/0611146>
[31] Wilson, K. G., Rev. Mod. Phys., 55, 583 (1983)
[32] Wegner, F. J.; Houghton, A., Phys. Rev., A8, 401 (1973)
[33] Polchinski, J., Nucl. Phys., B231, 269 (1984)
[34] Wetterich, C., Phys. Lett., B301, 90 (1993)
[35] Litim, D. F., J. High Energy Phys., 11, 059 (2001)
[36] Morris, T., Int. J. Mod. Phys., A9, 2411 (1994)
[37] Symanzik, K., Commun. Math. Phys., 18, 227 (1970) · Zbl 0195.55902
[38] Alexandre, J.; Polonyi, J., Ann. Phys., 288, 37 (2001) · Zbl 0972.81121
[39] Polonyi, J.; Sailer, K., Phys. Rev., D71, 025010 (2005)
[40] Luttinger, J. M.; Ward, J. C., Phys. Rev., 118, 1417 (1960) · Zbl 0098.21705
[41] Baym, G., Phys. Rev., 127, 1391 (1962) · Zbl 0104.45101
[42] De Dominicis, C.; Martin, P. C., J. Math. Phys., 5, 14 (1964)
[43] Cornwall, J. M.; Jackiw, R.; Tomboulis, E., Phys. Rev., D10, 2428 (1974) · Zbl 1110.81324
[44] Haymaker, R. W., Nuovo Cim., 14, 1 (1991)
[45] Dupuis, N., Eur. Phys. J., B48, 319 (2005)
[46] Pawlowski, J. M., Ann. Phys., 322, 2831 (2007) · Zbl 1132.81041
[47] Mazza, M.; Zappala, D., Phys. Rev., D64, 105013 (2001)
[48] Margaritis, A.; Ódor, G.; Patkos, A., Z. Phys., C39, 109 (1998)
[49] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics, (Nonrelativistic Theory (1965), Pergamon Press: Pergamon Press Oxford) · Zbl 0081.22207
[50] Kuhn, W., Z. Phys., 33, 408 (1925) · JFM 51.0747.05
[51] Nagy, S.; Nándori, I.; Polonyi, J.; Sailer, K., Phys. Rev., D77, 025026 (2008)
[52] Feynman, R., Statistical Mechanics (1972), W.A.Benjamin, Inc.: W.A.Benjamin, Inc. Massachusetts, chapt. 3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.