×

A speech encryption using fractional chaotic systems. (English) Zbl 1251.94013

Summary: In this paper, a new speech encryption using fractional chaotic systems is presented. A two-channel transmission method is used where the original speech is encoded using a nonlinear function of the chaotic states. Conditions for synchronization between fractional chaotic systems through one variable have been investigated theoretically by using the Laplace transform. The keys, key space, key selection rules, and sensitivity to keys are discussed in detail. Results show that the original speech is well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
68P25 Data encryption (aspects in computer science)
Full Text: DOI

References:

[1] Grangetto, M., Magli, E., Olmo, G.: Multimedia selective encryption by means of randomized arithmetic coding. IEEE Trans. Multimed. 8, 905–917 (2006) · doi:10.1109/TMM.2006.879919
[2] Lee, J., Vijaykrishnan, N., Irwin, M.J., Chandramouli, R.: Block-based frequency scalable technique for efficient hierarchical coding. IEEE Trans. Signal Process. 54, 2559–2566 (2006) · Zbl 1373.94639 · doi:10.1109/TSP.2006.874806
[3] Mao, Y., Wu, M.: A joint signal processing and cryptographic approach to multimedia encryption. IEEE Trans. Image Process. 15, 2061–2075 (2006) · doi:10.1109/TIP.2006.873426
[4] Ashtiyani, M., Behbahani, S., Asadi, S., Birgani, P.M.: Transmitting encrypted data by wavelet transform and neural network. In: IEEE Int. Symposium on Signal Processing and Information Technology, pp. 385–389 (2007)
[5] Manjunath, G., Anand, G.V.: Speech encryption using circulant transformations. In: IEEE Int. Conf. Multimedia and Expo., vol. 1, pp. 553–556 (2002)
[6] Lin, Q.H., Yin, F.L., Mei, T.M., Liang, H.: A blind source separation based method for speech encryption. IEEE Trans. Circuits Syst. 53, 1320–1328 (2006) · Zbl 1374.94791 · doi:10.1109/TCSI.2006.875164
[7] Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1983) · Zbl 1171.70306 · doi:10.1143/PTP.69.32
[8] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[9] Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2, 81–130 (2004)
[10] Jiang, Z.P.: A note on chaotic secure communication systems. IEEE Trans. Circuits Syst. 49, 92–96 (2002) · doi:10.1109/81.974882
[11] Li, Z., Xu, D.: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22, 477–481 (2004) · Zbl 1060.93530 · doi:10.1016/j.chaos.2004.02.019
[12] Orue, A.B., Fernandex, V., Alvarez, G., Pastor, G., Romera, M., Li, S., Montoya, F.: Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems. Phys. Lett. A 372, 5588–5592 (2008) · Zbl 1223.94017 · doi:10.1016/j.physleta.2008.06.066
[13] Petras, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38, 140–147 (2008) · doi:10.1016/j.chaos.2006.10.054
[14] Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional Chua’s system. IEEE Circuit Syst. Theory Appl. 42, 485–490 (1995) · doi:10.1109/81.404062
[15] Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fractals 32, 1459–1468 (2007) · Zbl 1129.37015 · doi:10.1016/j.chaos.2005.11.066
[16] Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 20, 442–450 (2004) · Zbl 1060.37026
[17] Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lu system. Physica A 353, 61–72 (2005) · doi:10.1016/j.physa.2005.01.021
[18] Guo, L.J.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[19] Sheu, L.J., Chen, H.K., Chen, G.H., Tam, L.M.: Chaos in a new system with fractional order. Chaos Solitons Fractals 31, 1203–1212 (2007) · doi:10.1016/j.chaos.2005.10.073
[20] Zhang, W., Zhou, S., Li, H., Zhu, H.: Chaos in a fractional-order Rossler system. Chaos Solitons Fractals 42, 1684–1691 (2009) · Zbl 1198.34001 · doi:10.1016/j.chaos.2009.03.069
[21] Wu, X., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010) · Zbl 1204.37035 · doi:10.1007/s11071-010-9658-x
[22] Wang, Z., Sun, Y., Qi, G., van Wyk, B.J.: The effect of fractional order on a 3D quadratic autonomous system with four-wing attractor. Nonlinear Dyn. (2010). doi: 10.1007/s11071-010-9705-7 · Zbl 1209.34060
[23] Podlubny, I.: Geometric and physical interpretation of fractional integral and fractional derivatives. J. Fractional Calc. 5, 367–386 (2002) · Zbl 1042.26003
[24] Kiani-B, A., Fallahi, K., Pariz, N., Leung, H.: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Commun. Nonlinear Sci. Numer. Simul. 14, 863–879 (2009) · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011
[25] Sheu, L.J., Chen, W.C., Chen, Y.C., Weng, W.T.: A two-channel secure communication using fractional chaotic systems. In: ICCESSE 2010: International Conference on Computer, Electrical, and Systems Science, and Engineering, Tokyo, Japan (2010)
[26] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[27] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[28] Lee, T.W., Bell, A.J., Lambert, R.H.: Blind separation of delayed and convolved sources. Adv. Neural Inf. Process. Syst. 9, 758–764 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.