×

Ricci flow and nonlinear reaction-diffusion systems in biology, chemistry, and physics. (English) Zbl 1402.92176

Summary: This paper proposes the Ricci-flow equation from Riemannian geometry as a general geometric framework for various nonlinear reaction-diffusion systems (and related dissipative solitons) in mathematical biology. More precisely, we propose a conjecture that any kind of reaction-diffusion processes in biology, chemistry, and physics can be modeled by the combined geometric-diffusion system. In order to demonstrate the validity of this hypothesis, we review a number of popular nonlinear reaction-diffusion systems and try to show that they can all be subsumed by the presented geometric framework of the Ricci flow.

MSC:

92C40 Biochemistry, molecular biology
92E20 Classical flows, reactions, etc. in chemistry
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53C80 Applications of global differential geometry to the sciences
35K57 Reaction-diffusion equations

References:

[1] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the sine-Gordon equation. Phys. Rev. Let. 30, 1262–1264 (1973) · doi:10.1103/PhysRevLett.30.1262
[2] Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: First-order exact solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987) · Zbl 0656.35135 · doi:10.1007/BF01017105
[3] Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[4] Anderson, M.T.: Geometrization of 3-manifolds via the Ricci flow. Not. Am. Math. Soc. 51(2), 184–193 (2004) · Zbl 1161.53350
[5] Barkley, D.: A model for fast computer-simulation of waves in excitable media. Physica D 49, 61–70 (1991) · doi:10.1016/0167-2789(91)90194-E
[6] Bode, M.: Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions. Physica D 106, 270–286 (1997) · Zbl 0930.92002 · doi:10.1016/S0167-2789(97)00050-X
[7] Cao, H.D., Chow, B.: Recent developments on the Ricci flow. Bull. Am. Math. Soc. 36, 59–74 (1999) · Zbl 0926.53016 · doi:10.1090/S0273-0979-99-00773-9
[8] Chow, B., Knopf, D.: The Ricci Flow: An Introduction. Mathematical Surveys and Monographs. AMS, Providence (2004) · Zbl 1086.53085
[9] Conway, J.M., Riecke, H.: Superlattice patterns in the complex Ginzburg-Landau equation with multi-resonant forcing. arXiv: 0803.0346 [nlin.PS] (2008) · Zbl 1183.35257
[10] Field, R.J.: Oregonator. Scholarpedia 2(5), 1386 (2007) · doi:10.4249/scholarpedia.1386
[11] Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. J. Am. Chem. Soc. 94, 8649–8664 (1972) · doi:10.1021/ja00780a001
[12] FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[13] Friedrich, R.: Group theoretic methods in the theory of pattern formation. In: Collective Dynamics of Nonlinear and Disordered Systems. Springer, Berlin (2004)
[14] Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972) · Zbl 0297.92007 · doi:10.1007/BF00289234
[15] Gurevich, S.V., Amiranashvili, S., Purwins, H.-G.: Breathing dissipative solitons in three-component reaction-diffusion system. Phys. Rev. E 74, 066201 (2006)
[16] Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982) · Zbl 0504.53034
[17] Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986) · Zbl 0628.53042
[18] Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–261 (1988) · Zbl 0663.53031 · doi:10.1090/conm/071/954419
[19] Hamilton, R.S.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993) · Zbl 0804.53023
[20] Hamilton, R.S.: Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7(4), 695–729 (1999) · Zbl 0939.53024
[21] Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996) · Zbl 0962.83500
[22] Hsu, S.Y.: Some results for the Perelman LYH-type inequality. arXiv: 0801.3506 [math.DG] (2008)
[23] Ivancevic, V.: Symplectic rotational geometry in human biomechanics. SIAM Rev. 46(3), 455–474 (2004) · Zbl 1063.92003 · doi:10.1137/S003614450341313X
[24] Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific, Singapore (2006) · Zbl 1120.92002
[25] Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, Berlin (2006) · Zbl 1092.53001
[26] Ivancevic, V., Ivancevic, T.: High-Dimensional Chaotic and Attractor Systems. Springer, Berlin (2006) · Zbl 1092.53001
[27] Ivancevic, V., Ivancevic, T.: Complex Dynamics: Advanced System Dynamics in Complex Variables. Springer, Berlin (2007) · Zbl 1134.81002
[28] Ivancevic, V., Ivancevic, T.: Applied Differential Geometry: A Modern Introduction. World Scientific, Singapore (2007) · Zbl 1126.53001
[29] Ivancevic, V., Ivancevic, T.: Neuro-Fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling. Springer, Berlin (2007) · Zbl 1193.91131
[30] Ivancevic, V., Ivancevic, T.: Computational Mind: A Complex Dynamics Perspective. Springer, Berlin (2007) · Zbl 1131.68497
[31] Ivancevic, V., Ivancevic, T.: Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. Springer, Berlin (2008) · Zbl 1152.37002
[32] Ivancevic, V., Ivancevic, T.: Quantum Leap: From Dirac and Feynman, Across the Universe, to Human Body and Mind. World Scientific, Singapore (2008) · Zbl 1417.81005
[33] Ivancevic, T., Jain, L., Pattison, J., Hariz, A.: Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis. Nonlinear Dyn. 56(1–2), 23–44 (2009) · Zbl 1170.92005 · doi:10.1007/s11071-008-9376-9
[34] Kaminaga, A., Vanag, V.K., Epstein, I.R.: ”Black spots” in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system. J. Chem. Phys. 122, 174706 (2005)
[35] Kaminaga, A., Vanag, V.K., Epstein, I.R.: A reaction-diffusion memory device. Angew. Chem. 45, 3087 (2006) · doi:10.1002/anie.200600400
[36] Kohler, G., Milstein, C.: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495 (1975) · doi:10.1038/256495a0
[37] Kolokolnikov, T., Tlidi, M.: Spot deformation and replication in the two-dimensional Belousov-Zhabotinsky reaction in water-in-oil microemulsion. Phys. Rev. Lett. 98, 188303 (2007)
[38] Kunz-Schughart, L.A.: Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol. Int. 23(3), 157–161 (1999) · doi:10.1006/cbir.1999.0384
[39] Li, J.: First variation of the Log Entropy functional along the Ricci flow. arXiv: 0712.0832 [math.DG] (2007)
[40] Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203
[41] Mackenzie, D.: Perelman declines math’s top prize; three others honored in Madrid. Science 313, 1027 (2006)
[42] Meinhardt, H.: Gierer-Meinhardt model. Scholarpedia 1(12), 1418 (2006) · doi:10.4249/scholarpedia.1418
[43] Milnor, J.: Towards the Poincaré conjecture and the classification of 3-manifolds. Not. Am. Math. Soc. 50(10), 1226–1233 (2003) · Zbl 1168.57303
[44] Misner, C., Thorne, K., Wheeler, J.A.: Gravitation. Freeman, New York (1973)
[45] Missel, A.R., Dahmen, K.A.: Hopping conduction and bacteria: transport in disordered reaction-diffusion systems. Phys. Rev. Let. 100, 058301 (2007)
[46] Morgan, S.W., Biktasheva, I.V., Biktashev, V.N.: Control of scroll wave turbulence using resonant perturbations. arXiv: 0806.2262 [nlinPS] (2008)
[47] Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962) · doi:10.1109/JRPROC.1962.288235
[48] Nelson, D.R., Shnerb, N.M.: Non-hermitian localization and population biology. Phys. Rev. E 58, 1383–1403 (1998) · doi:10.1103/PhysRevE.58.1383
[49] Nielsen, K., Hynne, F., Sorensen, P.G.: Hopf bifurcation in chemical kinetics. J. Chem. Phys. 94, 1020–1029 (1991) · doi:10.1063/1.460057
[50] Penrose, R.: Singularities and time-asymmetry. In: Hawking, S., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)
[51] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv: math/0211159 [math.DG] (2002) · Zbl 1130.53001
[52] Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv: math/0303109 [math.DG] (2003) · Zbl 1130.53002
[53] Preziosi, L.: Cancer Modeling and Simulation. CRC Press, Boca Raton (2003) · Zbl 1039.92022
[54] Prigogine, I.: From Being to Becoming: Time and Complexity in the Physical Sciences. Freeman, New York (1980)
[55] Purwins, H.-G., Bodeker, H.U., Liehr, A.W.: Dissipative Solitons in Reaction-Diffusion Systems. In: Akhmediev, N., Ankiewicz, A. (eds.) Dissipative Solitons. Lecture Notes in Physics. Springer, Berlin (2005) · Zbl 1080.35112
[56] Rabinovich, M.I., Ezersky, A.B., Weidman, P.D.: The Dynamics of Patterns. World Scientific, Singapore (2000) · Zbl 1043.37513
[57] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM Rev. 49(2), 179–208 (2007) · Zbl 1117.93011 · doi:10.1137/S0036144504446291
[58] Schöner, G.: Dynamical systems approaches to cognition. In: Sun, R. (ed.) Cambridge Handbook of Computational Cognitive Modeling. Cambridge University Press, Cambridge (2007)
[59] Sutherland, R.M.: Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240, 177–184 (1988) · doi:10.1126/science.2451290
[60] Thurston, W.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. 6, 357–381 (1982) · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[61] Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[62] Tyson, J.J.: A quantitative account of oscillations, bistability and travelling waves in the Belousov-Zhabotinsky reaction. In: Field, R.J., Burger, M. (eds.) Oscillation and Travelling Waves in Chemical Systems. Wiley, New York (1985)
[63] Yau, S.T.: Structure of three-manifolds–Poincaré and geometrization conjectures. Talk given at the Morningside Center of Mathematics on 20 June 2006
[64] Ye, R.: The log entropy functional along the Ricci flow. arXiv: 0708.2008v3 [math.DG] (2007)
[65] Zhabotinsky, A.M.: Belousov–Zhabotinsky reaction. Scholarpedia 2(9), 1435 (2007) · doi:10.4249/scholarpedia.1435
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.