×

Holographic models of de Sitter QFTs. (English) Zbl 1217.83032

Summary: We describe the dynamics of strongly coupled field theories in de Sitter spacetime using the holographic gauge/gravity duality. The main motivation for this is to explore the possibility of dynamical phase transitions during cosmological evolution. Specifically, we study two classes of theories: (i) conformal field theories on de Sitter in the static patch which are maintained in equilibrium at temperatures that may differ from the de Sitter temperature and (ii) confining gauge theories on de Sitter spacetime. In the former case we show that such states make sense from the holographic viewpoint in that they have regular bulk gravity solutions. In the latter situation we add to the evidence for a confinement/deconfinement transition for a large \(N\) planar gauge theory as the cosmological acceleration is increased past a critical value. For the field theories we study, the critical acceleration corresponds to a de Sitter temperature which is less than the Minkowski space deconfinement transition temperature by a factor of the spacetime dimension.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81T20 Quantum field theory on curved space or space-time backgrounds
83A05 Special relativity
83F05 Relativistic cosmology
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
83C75 Space-time singularities, cosmic censorship, etc.