×

Adaptivity and a posteriori error control for bifurcation problems. II: Incompressible fluid flow in open systems with \(Z_{2}\) symmetry. (English) Zbl 1311.76052

Summary: We consider the \(a\) \(posteriori\) error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or \(Z _{2}\) symmetry. Here, computable \(a\) \(posteriori\) error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed \(a\) \(posteriori\) error indicator on adaptively refined computational meshes are presented.
For part I, see [Commun. Comput. Phys. 8, 845–865 (2010)].

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

ARPACK; MUMPS
Full Text: DOI

References:

[1] Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Series in Computational and Applied Mathematics. Elsevier, Amsterdam (1996) · Zbl 0895.76040
[2] Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001) · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[3] Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000) · Zbl 0956.65017 · doi:10.1016/S0045-7825(99)00242-X
[4] Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006) · doi:10.1016/j.parco.2005.07.004
[5] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[6] Aston, P.J.: Analysis and computation of symmetry-breaking bifurcation and scaling laws using group theoretic methods. SIAM J. Math. Anal. 22, 139–152 (1991) · Zbl 0723.58038 · doi:10.1137/0522012
[7] Babuška, I., Osborn, J.: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978) · Zbl 0396.65068 · doi:10.1002/nme.1620121010
[8] Babuška, I., Tsuchiya, T.: A posteriori error estimates of the finite element solutions of parameterized nonlinear equations. Technical report, University of Maryland (1992)
[9] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Birkhäuser, Basel (2003) · Zbl 1020.65058
[10] Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001) · Zbl 1105.65349
[11] Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of non-linear problems. 3. Simple bifurcation points. Numer. Math. 38(1), 1–30 (1981) · Zbl 0525.65037 · doi:10.1007/BF01395805
[12] Cliffe, K.A., Garratt, T.J., Spence, A.: Eigenvalues of the discretized Navier-Stokes equations with application to the detection of Hopf bifurcations. Adv. Comput. Math. 1, 337–356 (1993) · Zbl 0830.76048 · doi:10.1007/BF02072015
[13] Cliffe, K.A., Hall, E., Houston, P.: Adaptivity and a posteriori error control for bifurcation problems III: Incompressible fluid flow in open systems with O(2) symmetry. In preparation · Zbl 1311.76053
[14] Cliffe, K.A., Hall, E., Houston, P.: Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31, 4607–4632 (2010) · Zbl 1211.37094 · doi:10.1137/080731918
[15] Cliffe, K.A., Hall, E., Houston, P., Phipps, E.T., Salinger, A.G.: Adaptivity and a posteriori error control for bifurcation problems I: The Bratu problem. Commun. Comput. Phys. 8, 845–865 (2010) · Zbl 1364.65246
[16] Cliffe, K.A., Spence, A., Tavener, S.J.: O(2)-symmetry breaking bifurcation: with application to the flow past a sphere in a pipe. Int. J. Numer. Methods Fluids 32, 175–200 (2000) · Zbl 0966.76025 · doi:10.1002/(SICI)1097-0363(20000130)32:2<175::AID-FLD912>3.0.CO;2-5
[17] Cliffe, K.A., Tavener, S.J.: The effect of cylinder rotation and blockage ratio on the onset of periodic flows. J. Fluid Mech. 501, 125–133 (2004) · Zbl 1051.76024 · doi:10.1017/S0022112003007377
[18] Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73, 569–593 (2004) · Zbl 1066.76036
[19] Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002) · Zbl 1032.65127 · doi:10.1137/S0036142900380121
[20] Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9, 1165–1178 (1999) · Zbl 1012.65112 · doi:10.1142/S021820259900052X
[21] Durán, R.G., Padra, C., Rodriguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003) · Zbl 1072.65144 · doi:10.1142/S0218202503002878
[22] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica, pp. 105–158. Cambridge University Press, Cambridge (1995) · Zbl 0829.65122
[23] Fearn, R.M., Mullin, T., Cliffe, K.A.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595–608 (1990) · doi:10.1017/S0022112090001707
[24] Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009) · Zbl 1191.65147 · doi:10.1137/070697264
[25] Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985) · Zbl 0607.35004
[26] Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988) · Zbl 0691.58003
[27] Griewank, A., Reddien, G.: The calculation of Hopf points by a direct method. IMA J. Numer. Anal. 3(3), 295–303 (1983) · Zbl 0521.65070 · doi:10.1093/imanum/3.3.295
[28] Hansbo, P., Larson, M.G.: Discontinuous finite element methods for incompressible and nearly incompressible elasticity by use of Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 2002 (1895–1908) · Zbl 1098.74693
[29] Hartmann, R.: Adaptive finite element methods for the compressible Euler equations. Ph.D. thesis, University of Heidelberg (2002) · Zbl 1010.76002
[30] Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002) · Zbl 1034.65081 · doi:10.1137/S1064827501389084
[31] Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15, 107–138 (2001) · Zbl 0995.65111 · doi:10.1023/A:1014291224961
[32] Houston, P., Süli, E.: Adaptive finite element approximation of hyperbolic problems. In: Barth, T., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lect. Notes Comput. Sci. Engrg, vol. 25, pp. 269–344. Springer, Berlin (2002) · Zbl 1141.76428
[33] Jepson, A.D.: Numerical Hopf Bifurcation. Ph.D. thesis. Caltech, Pasadena (1981)
[34] Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Academic Press, New York (1977) · Zbl 0581.65043
[35] Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2000) · Zbl 0974.65100 · doi:10.1137/S0036142997320164
[36] Larson, M.G., Barth, T.J.: A posteriori error estimation for discontinuous Galerkin approximations of hyperbolic systems. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000) · Zbl 0946.65074
[37] Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998) · Zbl 0901.65021
[38] Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differ. Equ. 24, 244–257 (2009) · Zbl 1169.65109 · doi:10.1002/num.20342
[39] Nystedt, C.: A priori and a posteriori error estimates and adaptive finite element methods for a model eigenvalue problem. Technical report 1995-05, Chalmers Finite Element Center, Chalmers University (1995)
[40] Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003) · Zbl 1055.76032 · doi:10.1137/S0036142901399124
[41] Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222(1), 391–407 (2007) · Zbl 1216.76034 · doi:10.1016/j.jcp.2006.07.029
[42] Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991) · Zbl 0792.73003
[43] Toselli, A.: hp-Discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565–1616 (2002) · Zbl 1041.76045 · doi:10.1142/S0218202502002240
[44] Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, London (1982) · Zbl 0539.58022
[45] Verfürth, R.: A posteriori error estimates for nonlinear problems. Math. Comput. 62, 445–475 (1989) · Zbl 0799.65112
[46] Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart (1996) · Zbl 0853.65108
[47] Walsh, T.F., Reese, G.M., Hetmaniuk, U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196, 3614–3623 (2007) · Zbl 1173.74446 · doi:10.1016/j.cma.2006.10.036
[48] Werner, B., Janovsky, V.: Computation of Hopf branches bifurcating from Takens-Bogdanov points for problems with symmetries. In: Seydel, R., Schneider, F.W., Kupper, T., Troger, H. (eds.) Bifurcation and Chaos: Analysis, Algorithms, Applications. International Series of Numerical Mathematics, vol. 97, pp. 377–388 (1991)
[49] Werner, B., Spence, A.: The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21, 388–399 (1984) · Zbl 0554.65045 · doi:10.1137/0721029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.