×

Numerical simulation of pedestrian flow past a circular obstruction. (English) Zbl 1270.90026

Summary: In this paper, a revisiting Hughes’ dynamic continuum model is used to investigate and predict the essential macroscopic characteristics of pedestrian flow, such as flow, density and average speed, in a two dimensional continuous walking facility scattered with a circular obstruction. It is assumed that pedestrians prefer to walk a path with the lowest instantaneous travel cost from origin to destination, under the consideration of the current traffic conditions and the tendency to avoid a high-density region and an obstruction. An algorithm for the pedestrian flow model is based on a cellcentered finite volume method for a scalar conservation law equation, a fast sweeping method for an Eikonal-type equation and a second-order TVD Runge-Kutta method for the time integration on unstructured meshes. Numerical results demonstrate the effectiveness of the algorithm. It is verified that density distribution of pedestrian flow is influenced by the position of the obstruction and the path-choice behavior of pedestrians.

MSC:

90B99 Operations research and management science
90-08 Computational methods for problems pertaining to operations research and mathematical programming
Full Text: DOI

References:

[1] Gipps, P.G., Marksjö, B.: A micro-simulation model for pedestrian flows. Math. Comput. Simul. 27, 95–105 (1985) · doi:10.1016/0378-4754(85)90027-8
[2] Okazaki, S.: A study of pedestrian movement in architectural space, Part 1: pedestrian movement by the application of magnetic models. Transactions of A. I. J. 283, 111–119 (1979)
[3] Helbing, D., Molnär, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995) · doi:10.1103/PhysRevE.51.4282
[4] Thompson, P.A., Marchant, E.W.: A computer model for the evacuation of large building populations. Fire Safety Journal 24, 131–148 (1995) · doi:10.1016/0379-7112(95)00019-P
[5] Thompson, P.A., Marchant, E.W.: Testing and application of the computer model ”SIMULEX”. Fire Safety Journal 24, 149–166 (1995 · doi:10.1016/0379-7112(95)00020-T
[6] Teknomo, K., Takeyama, Y., Inamura, H.: Review on micro scopic pedestrian simulation model. In: Proceedings Japan Society of Civil Engineering Conference, Morioka, Japan (2000)
[7] Hoogendoorn, S.P., Bovy, P.H.L.: Pedestrian route-choice and activity scheduling theory and models. Trans. Res. Part B 38, 169–190 (2004) · doi:10.1016/S0191-2615(03)00007-9
[8] Hoogendoorn, S.P., Bovy, P.H.L.: Simulation of pedestrian flows by optimal control and differential games. Optim. Contr. Appl. Meth. 24, 153–172 (2003) · Zbl 1073.93553 · doi:10.1002/oca.727
[9] Hughes, R.L.: A continuum theory for the flow of pedestrians. Trans. Res. Part B 36, 507–535 (2002) · doi:10.1016/S0191-2615(01)00015-7
[10] Hughes, R.L.: The flow of large crowds of pedestrians. Math. Comput. Simul. 53, 367–370 (2000) · doi:10.1016/S0378-4754(00)00228-7
[11] Huang, L., Wong, S.C., Zhang, M.P., et al: Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Trans. Res. Part B 43, 127–141 (2009) · doi:10.1016/j.trb.2008.06.003
[12] Xia, Y.H., Wong, S.C., Zhang, M.P., et al: An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. Int. J. Numer. Meth. Engng. 76, 337–350 (2008) · Zbl 1195.82004 · doi:10.1002/nme.2329
[13] Jiang, Y.Q., Xiong, T., Wong, S.C., et al: A reactive dynamic continuum user equilibrium model for bi-directional pedestrian flows. Acta Math. Sci. 29B, 1541–1555 (2009) · Zbl 1212.90078 · doi:10.1016/S0252-9602(10)60002-1
[14] Alastansiou, K., Chan, C.T.: Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Inter. J. Numer. Meth. Fluids 24, 1225–1245 (1997) · Zbl 0886.76064 · doi:10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO;2-D
[15] Wang, J.W., Liu, R.X.: The composite finite volume method on unstructured meshes for the two-dimensional shallow water equations. Inter. J Numer. Meth. in Fluids 37, 933–949 (2001) · Zbl 1055.76532 · doi:10.1002/fld.198
[16] Wang, J.W., Liu, R.X.: A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems. Math. Comput. Simul. 53, 171–183 (2000) · doi:10.1016/S0378-4754(00)00173-7
[17] Tsai Y.H.R., Cheng, L.T., Osher, S., et al: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2003) · Zbl 1049.35020 · doi:10.1137/S0036142901396533
[18] Zhao, H.K.: Fast sweeping method for Eikonal equations. Math. Comp. 74, 603–627 (2005) · Zbl 1070.65113 · doi:10.1090/S0025-5718-04-01678-3
[19] Qian, J., Zhang, Y.T., Zhao, H.K.: Fast sweeping methods for Eikonal equations on triangularmeshes. SIAMJ. Numer. Anal. 45, 83–107 (2007) · Zbl 1149.65087 · doi:10.1137/050627083
[20] Venkatakrishnan, V.: Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118, 120–130 (1995) · Zbl 0858.76058 · doi:10.1006/jcph.1995.1084
[21] Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003) · Zbl 1040.65088 · doi:10.1137/S0036142901392742
[22] Sethian, J.A., Vladimirsky, A.: Ordered upwind methods forstatic Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. 98, 11069–11074 (2001) · Zbl 1002.65112 · doi:10.1073/pnas.201222998
[23] Sethian, J.A., Vladimirsky, A.: Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured mesh. Proc. Natl. Acad. Sci. 97, 5699–5703 (2000) · Zbl 0963.65076 · doi:10.1073/pnas.090060097
[24] Kao, C.Y., Osher, S., Qian, J.: Legendre-transform-based fast sweeping methods for static Hamilton-Jacobi equations on triangulated meshes. J. Comput. Phys. 227, 10209–10225 (2008) · Zbl 1152.65102 · doi:10.1016/j.jcp.2008.08.016
[25] Gremaud, P.A., Kuster, C.M.: Computational study of fast methods for the Eikonal equations. SIAM J. Sci. Comput. 27, 1803–1816 (2006) · Zbl 1102.65107 · doi:10.1137/040605655
[26] Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.