×

Parametric Poincaré-Perron theorem with applications. (English) Zbl 1236.39001

As main result the authors prove a parametric generalization of the classical Poincaré-Perron theorem [O. Perron, Math. Ann. 84, 1–15 (1921; JFM 48.0479.01)] on stabilizing recurrence relations, where the varying coefficients of the recurrence depend on auxiliary parameters and converge uniformly in these parameters to their limiting values. As an application, the authors study convergence of the ratios of families of functions satisfying finite recurrence relations with varying functional coefficients. In Section 5 of the paper, some related topics and open problems are proposed.

MSC:

39A10 Additive difference equations

Citations:

JFM 48.0479.01

References:

[1] C. Berenstein and R. Gay, Complex Variables. An Introduction, Springer-Verlag, New York, 1991. · Zbl 0741.30001
[2] J. Borcea, R. Bøgvad, and B. Shapiro, On rational approximation of algebraic functions, Adv. Math. 204 (2006), 448–480. · Zbl 1108.30025 · doi:10.1016/j.aim.2005.06.002
[3] L. Bryzgalova, The maximum functions of a family of functions that depend on parameters, Funct. Anal. Appl. 12 (1978), 66–67. · Zbl 0405.58024
[4] E. Coussement, J. Coussement, and W. Van Assche, Asymptotic zero distribution for a class of multiple orthogonal polynomials, Trans. Amer. Math. Soc. 360 (2008), 5571–5588. · Zbl 1165.33007 · doi:10.1090/S0002-9947-08-04535-2
[5] S. Friedland, Invariant measures of groups of homeomorphisms and Auslander’s conjecture, Ergodic Theory Dynam. Systems 15 (1995), 1075–1089. · Zbl 0843.28009 · doi:10.1017/S0143385700009809
[6] S. Friedland, Convergence of products of matrices in projective spaces, Linear Alg. Appl. 413 (2006), 247–263. · Zbl 1089.15019 · doi:10.1016/j.laa.2004.06.021
[7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, 1978. · Zbl 0408.14001
[8] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York-Heidelberg, 1973. · Zbl 0294.58004
[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier analysis, second edition, Springer-Verlag, Berlin, 1990.
[10] M. E. Ismail and D. R. Masson, Generalized orthogonality and continued fractions, J. Approx. Theory 83 (1995), 1–40. · Zbl 0846.33005 · doi:10.1006/jath.1995.1106
[11] R.-J. Kooman, An asymptotic formula for solutions of linear second-order difference equations with regularly behaving coefficients. J. Difference Equ. Appl. 13 (2007), 1037–1049. · Zbl 1130.39007 · doi:10.1080/10236190701414462
[12] R.-J. Kooman, Asymptotic behaviour of solutions of linear recurrences and sequences of Möbiustransformations. J. Approx. Theory 93 (1998), 1–58. · Zbl 0933.39015 · doi:10.1006/jath.1998.3171
[13] V. P. Kostov, On the stratification and singularities of Stokes’ hypersurface of one- and two-parameter families of polynomials, Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI, 1990, pp. 251–271. · Zbl 0731.58005
[14] A. Máté and P. Nevai, A generalization of Poincaré’s theorem for recurrence equations. J. Approx. Theory 63 (1990), 92–97. · Zbl 0715.34131 · doi:10.1016/0021-9045(90)90116-8
[15] V. I. Matov Functions of the extremum of finite families of convex homogeneous functions Funktsional. Anal. i Prilozhen. 21(1) (1987), 51–62. · Zbl 0653.26012 · doi:10.1007/BF01077984
[16] H. Matsunaga and S. Murakami, Asymptotic behavior of solutions of functional difference equations, J. Math. Anal. Appl. 305 (2005), 391–410. · Zbl 1074.39009 · doi:10.1016/j.jmaa.2004.10.065
[17] O. Perron, Über Summengleichungen und Poincarésche Differenzengleichungen, Math. Ann. 84 (1921), 1–15. · JFM 48.0479.01 · doi:10.1007/BF01458689
[18] H. Poincare, Sur les equations lineaires aux differentielles ordinaires et aux differences finies, Amer. J. Math. 7 (1885), 203–258. · JFM 17.0290.01 · doi:10.2307/2369270
[19] M. Pituk, More on Poincaré’s and Perron’s theorems for difference equations, J. Difference Equ. Appl. 8 (2002), 201–216. · Zbl 1002.39014 · doi:10.1080/10236190211954
[20] R. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986.
[21] H. Stahl, Spurious poles in Páde approximation, J. Comp. Appl. Math. 99 (1998), 511–527. · Zbl 0928.41011 · doi:10.1016/S0377-0427(98)00180-0
[22] E. C. Titchmarsh, The Theory of Functions, second edition, University Press, Oxford, England, 1939. · Zbl 0022.14602
[23] A. K. Tsikh, Multidimensional Residues and Their Applications, Amer. Math. Soc., Providence, RI, 1992. · Zbl 0758.32001
[24] V. Vassiliev, Introduction to Topology, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0971.57001
[25] H. A. van der Vorst, Computational methods for large eigenvalue problems, Handbook of Numerical Analysis, Vol. VIII, North-Holland, Amsterdam, 2002, pp. 3–174.
[26] A. Zhedanov, Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory 101 (1999), 303–329. · Zbl 1058.42502 · doi:10.1006/jath.1999.3339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.