×

Two-sided bounds for the logarithmic capacity of multiple intervals. (English) Zbl 1221.31004

Let \(E\) be the disjoint union of finitely many closed subintervals of \([-1,1]\). This paper gives sharp upper and lower bounds for the logarithmic capacity, \(\text{cap\,}E\), of \(E\) that improve several known estimates. For example, if
\[ E=\bigcup _{1}^{n}[a_{k},b_{k}],\quad\text{where}\quad -1=a_{1}<b_{1}<a_{2}<...<b_{n}=1\quad\text{and}\quad n\geq 2, \]
then \(\text{cap\,}E\) is at most
\[ \frac{1}{2}\left\{ \cos \left[ 2^{-1}\sum_{1}^{n-1}\left( \cos^{-1}(a_{k+1})-\cos^{-1}(b_{k})\right) \right] \right\} ^{1/(n-1)}, \] and examples are provided where equality occurs. One of the lower estimates established for \(\text{cap\,}E\) is valid even for arbitrary closed subsets \(E\) of \([-1,1]\). The bounds provided are compared graphically with the results of numerical computations.

MSC:

31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions

References:

[1] N. I. Achieser, Über einige Funktionen, welche in zwei gegebenen Intervallen am weginsten von Null abweichen, I. Teil, Bulletin de Academie des Sciences de L’URSS, 1932, pp. 1163–1202. · Zbl 0007.00802
[2] N. I. Achieser, Über einige Funktionen, welche in zwei gegebenen Intervallen am weginsten von Null abweichen, II. Teil, Bulletin de Academie des Sciences de L’URSS, 1933, pp. 309–344. · Zbl 0007.34106
[3] L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973. · Zbl 0272.30012
[4] H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for complete elliptic integrals, J. Comput. Appl. Math. 172 (2004), 289–312. · Zbl 1059.33029 · doi:10.1016/j.cam.2004.02.009
[5] G. D. Anderson, M. K. Vamanamurthy and M. Vourinen, Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal. 21 (1990), 536–549. · Zbl 0692.33001 · doi:10.1137/0521029
[6] V. V. Andrievskii, On the Green function for a complement of a finite number of real intervals, Constr. Approx. 20 (2004), 565–583. · Zbl 1066.30004 · doi:10.1007/s00365-003-0538-1
[7] V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable, Russian Math. Surveys 49 (1994), 1–79; translated from Uspehi Mat. Nauk 49, No.1 (295) (1994), 3–76. · Zbl 0836.18003 · doi:10.1070/RM1994v049n01ABEH002002
[8] V. N. Dubinin and D. Karp, Capacities of certain plane condensers and sets under simple geometric transformations, Complex Var. Elliptic Equ. 53 (2008), 607–622. · Zbl 1151.31002 · doi:10.1080/17476930701734292
[9] M. Ebree, L. N. Trefethen, Green’s functions for multiply connected domains via conformal mapping, SIAM Rev. 41 (1999), 745–761. · Zbl 0938.30003 · doi:10.1137/S0036144598349277
[10] T. Falliero and A. Sebbar, Capacité de la réunion de trois intervalles et fonctions thêta de genre 2, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 763–766. · Zbl 0939.31004 · doi:10.1016/S0764-4442(99)80268-7
[11] T. Falliero and A. Sebbar, Capacite de la réunion de trois intervalles et fonctions thêta de genre 2, J. Math. Pures Appl. (9) 80 (2001), 409–443. · Zbl 1040.31002
[12] J. Gillis, Tchebycheff polynomials and the transifinite diameter, Amer. J. Math. 63 (1941), 283–290. · JFM 67.0158.03 · doi:10.2307/2371523
[13] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969. · Zbl 0183.07502
[14] K. Haliste, On extremal configuration for capacity, Ark. Mat. 27 (1989), 97–104. · Zbl 0741.31003 · doi:10.1007/BF02386362
[15] S. Kirsch, Transfinite diameter, Chebyshev constant and capacity, in Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier, Amsterdam, 2005. · Zbl 1067.30046
[16] R. M. Robinson, On the transfinite diameters of some related sets, Math. Z. 108 (1969), 377–380. · Zbl 0172.09902 · doi:10.1007/BF01110447
[17] K. Schiefermayr, An upper bound for the logarithmic capacity of two intervals, Complex Var. Elliptic Equ. 53 (2008), 65–75. · Zbl 1132.33337 · doi:10.1080/17476930701644863
[18] J. Shen, G. Strang and A. J. Wathen, The potential theory of several intervals and its applications, Appl. Math. Optim. 44 (2001), 67–85. · Zbl 0983.41006 · doi:10.1007/s00245-001-0011-0
[19] A. Yu. Solynin, Extremal configurations of certain problems in the capacity and harmonic measure, J. Math. Sci. (New York) 89 (1998), 1031–1049; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 226 (1996), 170–195. · Zbl 0898.31002 · doi:10.1007/BF02358540
[20] V. Totik, Metric properties of harmonic measure, Mem. Amer. Math. Soc. 184 (2006), no. 867. · Zbl 1107.31001
[21] H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Advances in Math. 3 (1969), 127–232. · Zbl 0183.07503 · doi:10.1016/0001-8708(69)90005-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.