×

Energy norm a posteriori error estimation for \(hp\)-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions. (English) Zbl 1220.65156

The authors derive an a posteriori error estimator for \(hp\) adaptive discontinuous Galerkin (DG) methods for elliptic problems on 1-irregularly and isotropically refined, affine hexahedral meshes in three dimensions. The estimator yields upper and lower bounds for the error measured in terms of the natural energy norm. The estimate is applied as an error indicator for an energy norm error estimation in an \(hp\)-adaptive refinement algorithm. The numerical tests show that the indicator is efficient in locating and resolving isotropic corner singularities at exponential convergence rates.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Amestoy, P. R.et al., SIAM J. Matrix Anal. Appl.23, 15 (2001), DOI: 10.1137/S0895479899358194.
[2] Amestoy, P. R.Duff, I. S.L’Excellent, J.-Y., Comput. Methods Appl. Mech. Eng.184, 501 (2000), DOI: 10.1016/S0045-7825(99)00242-X.
[3] Amestoy, P. R.et al., Parallel Computing32, 136 (2006).
[4] Arnold, D. N., SIAM J. Numer. Anal.19, 742 (1982), DOI: 10.1137/0719052.
[5] Arnold, D. N.et al., SIAM J. Numer. Anal.39, 1749 (2002), DOI: 10.1137/S0036142901384162.
[6] Baumann, C. E.Oden, J. T., Comput. Methods Appl. Mech. Engrg.175, 311 (1999). · Zbl 0924.76051
[7] Becker, R.Hansbo, P.Larson, M. G., Comput. Methods Appl. Mech. Engrg.192, 723 (2003), DOI: 10.1016/S0045-7825(02)00593-5.
[8] Beilina, L.Korotov, S.Křížek, M., Appl. Math.50, 569 (2005), DOI: 10.1007/s10492-005-0038-7.
[9] Burman, E.Ern, A., Math. Comp.76, 1119 (2007), DOI: 10.1090/S0025-5718-07-01951-5.
[10] Canuto, C.Quarteroni, A., Math. Comp.38, 67 (1982), DOI: 10.1090/S0025-5718-1982-0637287-3.
[11] Cockburn, B.Karniadakis, G. E.Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications, 11, eds. Cockburn, B.Karniadakis, G. E.Shu, C.-W. (Springer, 2000) pp. 3-50. · Zbl 0989.76045
[12] Eibner, T.Melenk, J. M., Comp. Mech.39, 575 (2007), DOI: 10.1007/s00466-006-0107-0.
[13] Ern, A.Stephansen, A. F., J. Comp. Math.26, 488 (2008). · Zbl 1174.65034
[14] S. Giani, E. J. C. Hall and P. Houston, AptoFEM: Users manual, Technical Report, University of Nottingham. In preparation.
[15] Houston, P.Schötzau, D.Wihler, T., Comput. Methods Appl. Mech. Engrg.195, 3224 (2006). · Zbl 1118.74049
[16] Houston, P.Schötzau, D.Wihler, T. P., Math. Models Methods Appl. Sci.17, 33 (2007). · Zbl 1116.65115
[17] Houston, P.Schwab, C.Süli, E., SIAM J. Numer. Anal.39, 2133 (2002), DOI: 10.1137/S0036142900374111.
[18] Houston, P.Senior, B.Süli, E., Numerical Mathematics and Advanced Applications ENUMATH 2001, eds. Brezzi, F.et al. (Springer, 2003) pp. 631-656. · Zbl 1043.65114
[19] Houston, P.Süli, E., Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, 25, eds. Barth, T.Deconinck, H. (Springer, 2002) pp. 269-344. · Zbl 1141.76428
[20] Houston, P.Süli, E., Comput. Methods Appl. Mech. Engrg.194, 229 (2005). · Zbl 1074.65131
[21] Houston, P.Süli, E.Wihler, T., IMA J. Numer. Anal.28, 245 (2008), DOI: 10.1093/imanum/drm009.
[22] Karakashian, O. A.Pascal, F., SIAM J. Numer. Anal.41, 2374 (2003), DOI: 10.1137/S0036142902405217.
[23] Melenk, J. M.Wohlmuth, B. I., Adv. Comp. Math.15, 311 (2001), DOI: 10.1023/A:1014268310921.
[24] Nitsche, J., Math. Abh. Sem. Univ. Hamburg36, 9 (1971), DOI: 10.1007/BF02995904.
[25] Perugia, I.Schötzau, D., J. Sci. Comp.17, 561 (2002), DOI: 10.1023/A:1015118613130.
[26] Rivière, B.Wheeler, M. F.Girault, V., Comput. Geosci.3, 337 (1999). · Zbl 0951.65108
[27] D. Schötzau, C. Schwab and T. Wihler, hp-DGFEM for second-order elliptic problems in polyhedra I: Stability and quasioptimality on geometric meshes, submitted.
[28] D. Schötzau, C. Schwab and T. Wihler, hp-DGFEM for second-order elliptic problems in polyhedra II: Exponential convergence, submitted. · Zbl 1457.65215
[29] Schötzau, D.Zhu, L., Appl. Numer. Math.59, 2236 (2009). · Zbl 1169.65108
[30] Schwab, C., p-and hp-Finite Element Methods — Theory and Application to Solid and Fluid Mechanics, 1998, Oxford Univ. Press · Zbl 0910.73003
[31] Wihler, T.Frauenfelder, P.Schwab, C., Comput. Math. Appl.46, 183 (2003), DOI: 10.1016/S0898-1221(03)90088-5.
[32] L. Zhu, Robust a posteriori error estimation for discontinuous Galerkin methods for convection-diffusion equations, Ph.D. thesis, University of British Columbia, 2010.
[33] L. Zhu and D. Schötzau, A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations, IMA J. Numer. Anal., 2010, doi:10.1093/imanum/drp038. · Zbl 1225.65104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.