×

Analysis of a finite volume method for a cross-diffusion model in population dynamics. (English) Zbl 1228.65178

The authors consider the strongly coupled cross-diffusion system
\[ \partial_t u - \text{div}\bigg[ \left( \begin{matrix} D_1 & 0 \\ 0 & D_2 \end{matrix} \right) \nabla {\mathbf u}\bigg] \text{div}[A({\mathbf u}) \nabla {\mathbf u}] = \left( \begin{matrix} F({\mathbf u}) \\ G({\mathbf u}) \end{matrix} \right) \quad \text{in } \Omega \times [0,T), \]
\(\Omega \subset \mathbb{R}^2 \text{or}\, \mathbb{R}^3\) a bounded domain, subject to initial and Neumann boundary conditions, where \({\mathbf u}:=(u,v)\) are two population densities and the reaction terms are given by
\[ F(u,v):=u(a_1-b_1u-c_1v), \quad G(u,v):= v(a_2-b_2u-c_2v). \]
If \(A=0\), the classical Lotka-Volterra two species competition model with self-diffusion is obtained. It is assumed that the diffusion matrix \(A=((A_{ij}))\) satisfies for all \({\mathbf w} \in \mathbb{R}^2\) and \(u,v \geq 0\)
\[ A_{12}(0,v)=0, \,\, A_{21}(u,0)=0, \,\, (A(u,v){\mathbf w} ,{\mathbf w} ) \geq \tfrac{1}{C}\, \| A(u,v) \| {\mathbf w}\|^2, \]
together with a polynomial growth condition with exponent depending on the dimension of \(\Omega\).
The existence of a non-negative unique weak solution \({\mathbf u}\) is shown based on a priori estimates and \(L^1\)-compactness. The authors discretize the given problem in space using a finite volume scheme and in time using backward differentiation. With analoguous methods the discrete problem is analyzed giving the existence and uniquness of a discrete non-negative solution and the convergence of a subsequence to \({\mathbf u}\). Nicely chosen numerical examples with \(d=1\) and \(d=2\) complete the paper.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
92D25 Population dynamics (general)

Software:

Chemotaxis
Full Text: DOI

References:

[1] Afif, M.Amaziane, B., Comput. Methods Appl. Mech. Engrg.191, 5265 (2002). · Zbl 1012.76057
[2] Alonso, D.Bartumeus, F.Catalan, J., Ecology83, 28 (2002), DOI: 10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2.
[3] V. Anaya, M. Bendahmane and M. Sepúlveda, A numerical analysis of a reaction-diffusion system modelling the dynamics of growth tumors, Math. Methods Models Appl. Sci. 20 (2010) 731-756. · Zbl 1203.35014
[4] Andreianov, B.Bendahmane, M.Karlsen, K. H., J. Hyp. Diff. Eqns.7, 1 (2010).
[5] Andreianov, B.Gutnic, M.Wittbold, P., SIAM J. Numer. Anal.42, 228 (2004), DOI: 10.1137/S0036142901400006.
[6] Barrett, J. W.Blowey, J. F., Numer. Math.98, 195 (2004), DOI: 10.1007/s00211-004-0540-y.
[7] Bendahmane, M., Netw. Heter. Media4, 863 (2008).
[8] M. Bendahmane, Mathematical analysis of a cross-diffusion system modeling the propagation of an epidemic disease, preprint 2008-09, Depto. Ing. Mat., U. de Concepción, available from http://www.ing-mat.udec.cl/; submitted.
[9] Bendahmane, M., Nonl. Anal.73, 2489 (2010). · Zbl 1197.35134
[10] Bendahmane, M.et al., J. Math. Pure Appl.92, 651 (2009).
[11] Chainais-Hillairet, C.; Droniou, J., IMA J. Numer. Anal.
[12] Chattopadhyay, J.Chatterjee, S., Nonlinear Phenom. Complex Syst.4, 364 (2001).
[13] Chen, L.Jüngel, A., SIAM J. Math. Anal.36, 301 (2004), DOI: 10.1137/S0036141003427798.
[14] Chen, L.Jüngel, A., J. Diff. Eqns.224, 39 (2006), DOI: 10.1016/j.jde.2005.08.002.
[15] Cherniha, R.Myroniuk, L., J. Phys. A: Math. Theor.41, 395 (2008).
[16] Chung, J. M.Peacock-López, E., Phys. Lett. A371, 41 (2007).
[17] Coudière, Y.Gallouët, T.Herbin, R., M2AN Math. Model. Numer. Anal.35, 767 (2001), DOI: 10.1051/m2an:2001135.
[18] Evans, L. C., Partial Differential Equations, 19, 1998, Amer. Math. Soc. · Zbl 0902.35002
[19] Eymard, R.Gallouët, T.Herbin, R., Handbook of Numerical AnalysisVII, eds. Ciarlet, P. G.Lions, J. L. (North-Holland, 2000) pp. 713-1020. · Zbl 0981.65095
[20] Eymard, R.Gallouët, T.Herbin, R., Appl. Num. Math.37, 31 (2001), DOI: 10.1016/S0168-9274(00)00024-6.
[21] Eymard, R.Gallouët, T.Herbin, R., IMA J. Numer. Anal.30, 1009 (2010), DOI: 10.1093/imanum/drn084.
[22] Eymard, R.et al., Math. Models Methods Appl. Sci.11, 1505 (2001), DOI: 10.1142/S0218202501001446.
[23] Eymard, R.et al., Numer. Math.92, 41 (2002), DOI: 10.1007/s002110100342.
[24] Filbet, F., Numer. Math.104, 457 (2006), DOI: 10.1007/s00211-006-0024-3.
[25] Galiano, G.Garzón, M. L.Jüngel, A., Numer. Math.93, 655 (2003), DOI: 10.1007/s002110200406.
[26] Galiano, G.Garzón, M. L.Jüngel, A., Rev. R. Acad. Cien. Serie A. Mat.95, 281 (2001). · Zbl 1021.35047
[27] Gambino, G.Lombardo, M. C.Sammartino, M., Appl. Num. Math.59, 1059 (2009), DOI: 10.1016/j.apnum.2008.05.002. · Zbl 1165.65385
[28] Glitzky, A.Griepentrog, J. A., SIAM J. Numer. Anal.48, 372 (2010), DOI: 10.1137/09076502X.
[29] Handlovičová, A.Mikula, K.Sgallari, F., Numer. Math.93, 675 (2003), DOI: 10.1007/s002110100374.
[30] Horstmann, D., Nonlinear Anal.: Real World Appl.8, 90 (2007). · Zbl 1134.35058
[31] Kovács, S., Nonlinear Anal.59, 567 (2004).
[32] S. N. Kruzhkov, Results on the nature of the continuity of solutions of parabolic equations and some of their applications. Mat. Zametki 6 (1969) 97-108 [English translation: Math. Notes 6 (1969) 517-523]. · Zbl 0189.10602
[33] Levin, S. A.Segel, L. A., SIAM Rev.27, 45 (1985), DOI: 10.1137/1027002.
[34] Lions, J.-L., Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires, 1969, Dunod · Zbl 0189.40603
[35] Lou, Y.Ni, W.-M.Yotsutani, S., Disc. Cont. Dynam. Syst.10, 435 (2004), DOI: 10.3934/dcds.2004.10.435.
[36] Matano, H.Mimura, M., Publ. RIMS, Kyoto Univ.19, 1049 (1983), DOI: 10.2977/prims/1195182020.
[37] Mimura, M.Kawasaki, K., J. Math. Biol.9, 49 (1980), DOI: 10.1007/BF00276035.
[38] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, 2003, Springer-Verlag · Zbl 1006.92002
[39] Okubo, A.et al., Proc. R. Soc. London B238, 113 (1989), DOI: 10.1098/rspb.1989.0070.
[40] Pao, C. V., Nonlinear Anal.60, 1197 (2005). · Zbl 1074.35034
[41] Rodrigo, M.Mimura, M., Hiroshima Math. J.30, 257 (2000). · Zbl 0970.35074
[42] Shigesada, N.; Kawasaki, K., Biological Invasions: Theory and Practice, 1997, Oxford Univ. Press
[43] Shigesada, N.Kawasaki, K.Teramoto, E., J. Theor. Biol.79, 83 (1979).
[44] Tian, C.Lin, Z.Pedersen, M., Nonlinear Anal.: Real World Appl.11, 1036 (2010), DOI: 10.1016/j.nonrwa.2009.01.043. · Zbl 1180.35098
[45] Wen, Z.Fu, S., J. Comp. Appl. Math.230, 34 (2009), DOI: 10.1016/j.cam.2008.10.064.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.