×

Trigonometry of quantum states. (English) Zbl 1211.81024

Summary: Recently the geometry of quantum states has been under considerable development. Every good geometry deserves, if possible, an accompanying trigonometry. Here, I introduce such a trigonometry to accompany the geometry of quantum states.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81P40 Quantum coherence, entanglement, quantum correlations
97G60 Plane and spherical trigonometry (educational aspects)
Full Text: DOI

References:

[1] Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States. Cambridge Press, Cambridge (2008) · Zbl 1155.81002
[2] Kus, M., Zyczkowski, K.: Geometry of entangled states. Phys. Rev. A 63, 032307 (2001) · doi:10.1103/PhysRevA.63.032307
[3] Gustafson, K., Rao, D.: Numerical Range. Springer, New York (1997) · Zbl 0362.47001
[4] Gustafson, K.: Lectures on Computational Fluid Dynamics, Mathematical Physics, and Linear Algebra. World Scientific, Singapore (1997) · Zbl 0985.00008
[5] Gustafson, K.: Noncommutative trigonometry. Oper. Theory, Adv. Appl. 167, 127–155 (2006) · Zbl 1181.47007 · doi:10.1007/3-7643-7588-4_5
[6] Gustafson, K.: A min–max theorem. Am. Math. Soc. Not. 15, 799 (1968) · Zbl 0183.41602
[7] Gustafson, K.: Operator trigonometry of Hotelling correlation, Frobenius condition, Penrose twistor. Linear Algebra Appl. 430, 2762–2770 (2009) · Zbl 1165.15023 · doi:10.1016/j.laa.2008.12.013
[8] Gustafson, K.: The trigonometry of twistors and elementary particles. In: Accardi, L., Adenier, G., Fuchs, C., Jaeger, G., Khrennikov, A., Larsson, J., Stenholm, S. (eds.) Foundations of Probability and Physics-5, Vaxjo, August 2008. Am. Inst. Phys. Conf. Proceedings, vol. 1101, pp. 65–73. AIP, New York (2009)
[9] Nielsen, M., Kempe, J.: Separable states are more disordered globally than locally. Phys. Rev. Lett. 86, 5184–5187 (2001) · doi:10.1103/PhysRevLett.86.5184
[10] Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393–397 (2006) · doi:10.1016/j.optcom.2006.01.061
[11] Jaeger, G., Ann, K.: Entanglement sudden death in qubit–qutrit systems. Phys. Lett. A 372, 579–583 (2008) · Zbl 1220.81021 · doi:10.1016/j.physleta.2007.11.036
[12] Gustafson, K.: An extended operator trigonometry. Linear Algebra Appl. 319, 117–135 (2000) · Zbl 0969.15013 · doi:10.1016/S0024-3795(00)00170-1
[13] Gustafson, K.: Operator trigonometry of statistics and econometrics. Linear Algebra Appl. 354, 141–158 (2002) · Zbl 1015.62054 · doi:10.1016/S0024-3795(01)00315-9
[14] Gustafson, K.: The trigonometry of matrix statistics. Int. Stat. Rev. 74, 187–202 (2006) · doi:10.1111/j.1751-5823.2006.tb00169.x
[15] Levay, P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A 37, 1821–1841 (2004) · Zbl 1067.81049 · doi:10.1088/0305-4470/37/5/024
[16] Mendl, C., Wolf, M.: Unital quantum channels–convex structure and revivals of Birkhoff’s theorem. Comm. Math. Phys. 289, 1057–1086 (2009) · Zbl 1167.81011 · doi:10.1007/s00220-009-0824-2
[17] Uhlmann, A.: The ’transition probability’ in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976) · Zbl 0355.46040 · doi:10.1016/0034-4877(76)90060-4
[18] Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994) · Zbl 0941.81508 · doi:10.1080/09500349414552171
[19] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[20] Knill, M., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997) · doi:10.1103/PhysRevA.55.900
[21] Gustafson, K.: Unpublished notes
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.