×

Asymmetric multi-party quantum state sharing of an arbitrary \(m\)-qubit state. (English) Zbl 1209.81054

Summary: We present a scheme for asymmetric multi-party quantum state sharing of an arbitrary \(m\)-qubit state with \(n\) agents. The sender Alice first shares \(m - 1\) Bell states and one \(n + 1\)-particle Greenberger-Horne-Zeilinger state with \(n\) agents, where the agent Bob, who is designated to recover the original \(m\)-qubit state, just keeps \(m\) particles and other agents (all controllers) \(n - 1\) particles, that is, each controller only holds one particle in hand. Subsequently, Alice performs \(m\) Bell-basis measurements on her \(2m\) particles and each controller only need take a single-particle measurement on his particle with the basis \(X\). Finally, Bob can recover the original \(m\)-qubit state with the corresponding local unitary operations according to Alice and all controllers’ measurement results. Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value, which is higher than those of the known symmetric schemes.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, vol. 48, pp. 313–317. AFIPS Press, Montvale (1979)
[2] Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979) · Zbl 0414.94021 · doi:10.1145/359168.359176
[3] Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[4] Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999) · doi:10.1103/PhysRevLett.83.648
[5] Gottesman D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311-1–042311-8 (2000) · doi:10.1103/PhysRevA.61.042311
[6] Hideki I., Jörn M.Q., et al.: A Quantum information theoretical model for quantum secret sharing schemes. arXiv:quant-ph /0311136v1 (2003)
[7] Sudhir K.S., Srikanth R.: Generalized quantum secret sharing. Phys. Rev. A 71(1), 012328-1–012328-6 (2005)
[8] Qin S.J., Gao F., Wen Q.Y., Zhu F. C.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324-1–062324-7 (2007) · doi:10.1103/PhysRevA.76.062324
[9] Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301-1–042301-6 (2001) · doi:10.1103/PhysRevA.63.042301
[10] Lance A.M., Symul T., Bowen W.P., Sanders B.C., Lam P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903-1–177903-4 (2004) · doi:10.1103/PhysRevLett.92.177903
[11] Bandyopadhyay S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62((1), 012308-1–012308-7 (2000)
[12] Hsu L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68(2), 022306-1–022306-4 (2003) · doi:10.1103/PhysRevA.68.022306
[13] Li Y.M., Zhang K.S., Peng K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004) · Zbl 1123.81331 · doi:10.1016/j.physleta.2004.03.034
[14] Deng F.G., Li C.H., Li Y.S. et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338-1–022338-8 (2005)
[15] Deng F.G., Li X.H., Li C.Y. et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301-1–044301-4 (2005)
[16] Li X.H., Zhou P., Li C.Y. et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B. At. Mol. Opt. Phys. 39(8), 1975–1983 (2006) · doi:10.1088/0953-4075/39/8/015
[17] Deng F.G., Li X.H., Li C.Y. et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39(3), 459–464 (2006) · doi:10.1140/epjd/e2006-00124-1
[18] Man Z.X., Xia Y.J., An N.B.: Quantum state sharing of an arbitrary multiqubit sate using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007) · doi:10.1140/epjd/e2007-00024-x
[19] Muralidharan S., Panigrahi P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333-1–062333-5 (2008) · doi:10.1103/PhysRevA.78.062333
[20] Liu J., Liu Y.M., Zhang Z.J.: Generalized multiparty quantum single-qutrit-state sharing. Int. J. Theor. Phys. 47(9), 2353–2362 (2008) · Zbl 1160.81342 · doi:10.1007/s10773-008-9669-2
[21] Yuan H., Liu Y.M., Han L.F., Zhang Z.J.: Tripartite arbitrary two-qutrit quantum state sharing. Commun. Theor. Phys. 49(5), 1191–1194 (2008) · Zbl 1392.82061 · doi:10.1088/0253-6102/49/5/56
[22] Wang T.J., Zhou H.Y., Deng F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qubit entanglements and generalized Bell-state measurements. Physica A 387(18), 4716–4722 (2008) · doi:10.1016/j.physa.2008.03.030
[23] Sheng Y.B., Deng F.G., Zhou H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 48(2), 279–284 (2008) · doi:10.1140/epjd/e2008-00075-5
[24] Cabello A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000) · doi:10.1103/PhysRevLett.85.5635
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.