×

Twisted cyclic theory, equivariant \(KK\)-theory and KMS states. (English) Zbl 1218.19002

The authors gave results of cohomological informations related to a non-tracial weight \(\Phi\) on a C*-algebra \(A\). Assume that \(\Phi\) has the \(KMS_\beta\) property with respect to a one-parameter group of automorphism \(\sigma\) of \(A\) and that \(\sigma: \mathbb R \to \text{Aut}(A)\) factorizes through a circle action \(\sigma: \mathbb R \to \text{Aut}(A)\). The element \(\psi = (b+B)\Phi\) is a cocycle on the quotient complex \((CC_{\text{ev}}(A)/CC_{\text{ev}}(A^\sigma), b+B)\) and gives a pairing with the \(K\)-theory of the mapping cone \(M\) of the inclusion \(A^\sigma \hookrightarrow A\). The action of \(\sigma\) induces an element \([\hat{\mathcal D}]\) of the KK-group \(KK^{\mathbb T}_0(M,A^\sigma)\) and the Kasparov product gives the homomorphism
\[ [\hat{\mathcal D}] \cap : K^{\mathbb T}_0(M) \to K^{\mathbb T}_0(A^\sigma)= K_0(A^\sigma)[\chi, \chi^{-1}], \]
where \(\chi\) is the fundamental character of \(\mathbb T\). The pairing of \([\hat{\mathcal D}]\) with \(K^{\mathbb T}_0(M)\) is given in Theorem 2.11: Let \([v]\) be a class in \(K^{\mathbb T}_0(M)\) represented by a partial isometry \(v\) in \(\left(A^\sim \otimes B(\mathcal H) \right)^{\mathbb T}\), then
\[ \text{Index}_{\hat{\mathcal D}}([v]) = -\text{Index}\left((P \otimes 1)v(P\otimes 1): v^*v(P\mathcal H_F \otimes H) \to vv^*(P\mathcal H_F \otimes \mathcal H)\right). \]
For a faithful, positive, semifinite weight \(\phi\) on a C*-algebra \(A\) satisfying the \(KMS_\beta\) condition, with respect to the action of \(\mathbb T\) induced by \(\sigma\), denote \(\mathcal H_\phi = L^2(A,\phi)\), \(\pi_\phi: A \to \mathcal B(\mathcal H_\phi)\) the GNS-representation, \(J_\phi\) the conjugate linear isometry on \(\mathcal H_\phi\), \(\pi_\phi(A)' = J_\phi\overline{\phi_\phi(A)}J_\phi\), and denote \(\mathcal N = J_\phi\overline{\phi_\phi(A^\sigma)}J_\phi\).
Identifying a natural faithful semifinite weight \(\phi\) on the C*-algebra \(\mathcal N\) with a semitrace \(Tr_\phi\) we study the spectral flow of a path of operators of the form \(t \in [0,1] \mapsto \mathcal D + a_t\), where \(\mathcal D\) is the generator of the action of \(\mathbb T\) and \(a_t\) is a path of bounded perturbation associated to a class in \(K^{\mathbb T}_0(M)\).
If \((A,\pi_\phi,\mathcal H_\phi,\mathcal D)\) is a spectral triple with respect to \((\mathcal N, Tr_\phi)\), the semifinite von Neumann algebra \(\mathcal M = \mathcal N_\phi\) and the trace \(\phi_{\mathcal D} = Tr_\phi(e^{-\beta\mathcal D/2}\cdot e^{-\beta\mathcal D/2})\) is a trace on \(\mathcal M\) and one makes a modular index pairing by an analytical method (Theorems 5.6, 4.10, 5.9, and also 1.2, 1.3, 1.4). This puts the previous considered example of Cuntz algebras and \(SU_q(2)\) in a general framework and then the authors consider a new example of Araki-Woods \(III_\lambda\) representations of the Fermion algebra.

MSC:

19K35 Kasparov theory (\(KK\)-theory)
46L80 \(K\)-theory and operator algebras (including cyclic theory)
19L47 Equivariant \(K\)-theory
19L50 Twisted \(K\)-theory; differential \(K\)-theory

Citations:

Zbl 1175.46064

References:

[1] DOI: 10.2977/prims/1195191148 · Zbl 0326.46031 · doi:10.2977/prims/1195191148
[2] DOI: 10.1017/S0305004100049410 · Zbl 0297.58008 · doi:10.1017/S0305004100049410
[3] DOI: 10.1016/j.aim.2004.11.001 · Zbl 1092.46050 · doi:10.1016/j.aim.2004.11.001
[4] DOI: 10.4153/CJM-1998-038-x · Zbl 0915.46063 · doi:10.4153/CJM-1998-038-x
[5] DOI: 10.1023/B:KTHE.0000022922.68170.61 · Zbl 1051.19004 · doi:10.1023/B:KTHE.0000022922.68170.61
[6] DOI: 10.1016/S0001-8708(02)00015-4 · Zbl 1015.19003 · doi:10.1016/S0001-8708(02)00015-4
[7] DOI: 10.1016/j.jfa.2003.11.016 · Zbl 1058.19002 · doi:10.1016/j.jfa.2003.11.016
[8] DOI: 10.1016/j.aim.2005.03.011 · Zbl 1118.46060 · doi:10.1016/j.aim.2005.03.011
[9] DOI: 10.1016/j.aim.2005.03.010 · Zbl 1101.46045 · doi:10.1016/j.aim.2005.03.010
[10] DOI: 10.1016/j.geomphys.2009.07.005 · Zbl 1175.46064 · doi:10.1016/j.geomphys.2009.07.005
[11] DOI: 10.1007/s00220-002-0732-1 · Zbl 1015.81029 · doi:10.1007/s00220-002-0732-1
[12] Julg, C. R. Acad. Sci. Paris Sér. I Math. 292 pp 629– (1981)
[13] DOI: 10.1070/IM1981v016n03ABEH001320 · Zbl 0464.46054 · doi:10.1070/IM1981v016n03ABEH001320
[14] DOI: 10.1016/S0393-0440(02)00115-8 · Zbl 1029.46114 · doi:10.1016/S0393-0440(02)00115-8
[15] DOI: 10.1016/j.jfa.2003.08.008 · Zbl 1060.46049 · doi:10.1016/j.jfa.2003.08.008
[16] DOI: 10.1007/s00220-004-1154-z · Zbl 1079.58021 · doi:10.1007/s00220-004-1154-z
[17] DOI: 10.1016/j.jfa.2005.07.009 · Zbl 1099.46047 · doi:10.1016/j.jfa.2005.07.009
[18] Putnam, J. Oper. Th. 38 pp 151– (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.