×

The embedding of line graphs associated to the zero-divisor graphs of commutative rings. (English) Zbl 1207.13005

Let \(R\) be a commutative ring with nonzero identity, and let \(\text{Z}(R)\) be its set of zero divisors. The zero-divisor graph, \(\Gamma(R)\), is the graph with vertices the set of nonzero zero divisors of \(R\), and for distinct \(x,y \in {Z(R)}\), the vertices \(x\) and \(y\) are adjacent if and only if \(xy=0\). In the paper under review, the authors study the minimal embedding of the line graph associated to \(\Gamma(R)\) into compact surfaces (orientable or non-orientable) and completely classify all finite commutative rings \(R\) such that the line graphs associated to their zero-divisor graphs have genera or crosscaps up to two.

MSC:

13A99 General commutative ring theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
Full Text: DOI

References:

[1] S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, Journal of Algebra 270 (2003), 169–180. · Zbl 1032.13014 · doi:10.1016/S0021-8693(03)00370-3
[2] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, Journal of Algebra 274 (2004), 847–855. · Zbl 1085.13011 · doi:10.1016/S0021-8693(03)00435-6
[3] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes in Pure and Applied Mathematics 220 (2001), 61–72. · Zbl 1035.13004
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999), 434–447. · Zbl 0941.05062 · doi:10.1006/jabr.1998.7840
[5] M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969. · Zbl 0175.03601
[6] J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs, Additivity of genus of a graph, American Mathematical Society. Bulletin 68 (1962), 565–568. · Zbl 0142.41501 · doi:10.1090/S0002-9904-1962-10847-7
[7] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988), 208–226. · Zbl 0654.13001 · doi:10.1016/0021-8693(88)90202-5
[8] L. W. Beineke and S. Stahl, Blocks and the nonorientable genus of graphs, Journal of Graph Theory 1 (1977), 75–78. · Zbl 0366.05030 · doi:10.1002/jgt.3190010114
[9] D. Bénard, Orientable imbedding of line graphs, Journal of Combinatorial Theory. Series B 24 (1978), 34–43. · Zbl 0311.05105 · doi:10.1016/0095-8956(78)90074-6
[10] H.-J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, Journal of Algebra 319 (2008), 2789–2802. · Zbl 1143.13029
[11] H.-J. Chiang-Hsieh, N. O. Smith and H.-J. Wang, Commutative rings with toroidal zero-divisor graphs, Houston Journal of Mathematics 36 (2010), 1–31. · Zbl 1226.05095
[12] H. H. Glover, J. P. Huneke and C. S. Wang, 103 graphs that are irreducible for the projective plane, Journal of Combinatorial Theory. Series B 27 (1979), 332–370. · doi:10.1016/0095-8956(79)90022-4
[13] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[14] F. Harary, Graph Theory, Addison-Wesley, Reading Mass., 1972.
[15] W. Massey, Algebraic Topology: An Introduction, Harcourt, Brace & World, New York, 1967.
[16] S. B. Mulay, Cycles and symmetries of zero-divisors, Communications in Algebra 30 (2002), 3533–3558. · Zbl 1087.13500 · doi:10.1081/AGB-120004502
[17] G. Ringel, On the genus of the graph K n {\(\times\)} K 2 or the n-Prism, Discrete Mathematics 20 (1977), 287–294.
[18] N. O. Smith, Planar zero-divisor graphs, International Journal of Commutative Rings 2 (2003), 177–188. · Zbl 1165.13305
[19] H.-J. Wang, Zero-divisor graphs of genus one, Journal of Algebra 304 (2006), 666–678. · Zbl 1106.13029 · doi:10.1016/j.jalgebra.2006.01.057
[20] T. White, The genus of the cartesian product of two graphs, Journal of Combinatorial Theory 11 (1971), 89–94. · doi:10.1016/0095-8956(71)90018-9
[21] T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies 188, North-Holland, Amsterdam, 1984.
[22] H. Whitney, Congruent graphs and connectivity of graphs, American Journal of Mathematics 54 (1932), 150–168. · JFM 58.0609.01 · doi:10.2307/2371086
[23] C. Wickham, Classification of rings with genus one zero-divisor graphs, Communications in Algebra 36 (2008), 325–345. · Zbl 1137.13015 · doi:10.1080/00927870701713089
[24] J. W. T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech., 12 (1963) 303–315. · Zbl 0109.41701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.