×

Bishop’s theorem and differentiability of a subspace of \(C_b(K)\). (English) Zbl 1217.46015

Let \(C_b(K)\) be the uniform algebra of bounded continuous complex-valued functions defined on the Hausdorff space \(K.\) In Section 2, the authors study, for an arbitrary closed subspace \(A\) of \(C_b(K)\), the Gâteaux and the Fréchet differentiability of the sup-norm \(\|\cdot\|\) at a given \(f\in A.\) They show that if \(f\) is a strong peak function, then \(\|\cdot\|\) is Gâteaux differentiable at \(f\), and that the converse holds whenever \(A\) is a separating subspace, \(K\) is compact and \(f\neq 0\). As a consequence, it is deduced that for compact \(K\) and nontrivial separating separable subspaces \(A\), the set of all peak functions in \(A\) form a dense \(G_\delta\) subset of \(A\) and the set \(\rho A\) of peak points for functions in \(A\) is a norming set whose closure in \(K\) is the Shilov boundary of \(A,\) that is, the smallest closed norming subset for \(A\).
The article appears to be motivated by the study of differentiability properties of the norm of the disc algebra generalizations
\[ A_b(B_X)=\{f\in C_b(B_X): f \text{ is analytic on the interior of } B_X\}\text{ and} \]
\[ A_u(B_X)=\{f\in A_b(B_X): f \text{ is uniformly continuous}\}, \]
where \(B_X\) is the the closed ball of a nontrivial complex Banach space \(X.\) As applications of the general results obtained, it is proved that, if \(X\) has the Radon-Nikodým property, then for either \(A_b(B_X)\) or \(A_u(B_X),\) the set of strong peak functions is dense and therefore the norm is Gâteaux differentiable on a dense subset. However, the norm is nowhere Fréchet differentiable for both algebras and general \(X,\) as the authors show.
Some other similar results on the analogues for vector-valued function spaces and on the numerical Shilov boundary complete this interesting paper.

MSC:

46E15 Banach spaces of continuous, differentiable or analytic functions
46G05 Derivatives of functions in infinite-dimensional spaces
49J50 Fréchet and Gateaux differentiability in optimization
46G20 Infinite-dimensional holomorphy

References:

[1] M. D. Acosta, J. Alaminos, D. García and M. Maestre, On holomorohic functions attaining their norms, Journal of Mathematical Analysis and Applications 297 (2004), 625–644. · Zbl 1086.46034 · doi:10.1016/j.jmaa.2004.04.010
[2] M. D. Acosta and S. G. Kim, Numerical boundaries for some classical Banach spaces, Journal of Mathematics and Applications 350 (2009), 694–707. · Zbl 1167.46008 · doi:10.1016/j.jmaa.2008.05.064
[3] R. M. Aron, Y. S. Choi, M. L. Lourenço and Q. W. Paques, Boundaries for algebras of analytic functions on infinite-dimensional Banach spaces. Banach spaces (Merida, 1992), Contemporary Mathematics 144, American Mathematical Society, Providence, RI, 1993, pp. 15–22. · Zbl 0805.46032
[4] R. M. Aron, B. J. Cole and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, Journal für die Reine und Angewandte Mathematik 415 (1991), 51–93. · Zbl 0717.46031
[5] E. Bishop, A minimal boundary for function algebras, Pacific Journal of Mathematics 9 (1959), 629–642. · Zbl 0087.28503
[6] J. Bourgain, On dentability and the Bishop-Phelps property, Israel Journal of Mathematics 28 (1977), 265–271. · Zbl 0365.46021 · doi:10.1007/BF02760634
[7] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in a Banach space, Rossiĭskaya Akademiya Nauk. Matematicheskie Zametki 31 (1982), no. 2, 203–214, 317; English translation: Mathematical Notes 31 (1982), 104–110. · Zbl 0496.30029
[8] T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Transactions of the American Mathematical Society 314 (1989), 639–659. · Zbl 0704.46033 · doi:10.1090/S0002-9947-1989-0986022-0
[9] S. B. Chae, Holomorphy and calculus in normed spaces, Marcel Dekker, Inc., New York, 1985. · Zbl 0571.46031
[10] Y. S. Choi and K. H. Han, Boundaries for algebras of holomorphic functions on Marcinkiewicz sequence spaces, Journal of Mathematical Analysis and Applications 323 (2006), 1116–1133. · Zbl 1117.46034 · doi:10.1016/j.jmaa.2005.11.028
[11] Y. S. Choi, K. H. Han and H. J. Lee, Boundaries for algebras of holomorphic functions on Banach spaces, Illinois Journal of Mathematics 51 (2007), 883–896. · Zbl 1214.46033
[12] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, Journal of the London Mathematical Society 54 (1996), 135–147. · Zbl 0858.47005
[13] W. J. Davis, D. J. H. Garling and N. Tomczak-Jagermann, The complex convexity of quasi-normed linear spaces, Journal of Functional Analysis 55 (1984), 110–150. · Zbl 0552.46012 · doi:10.1016/0022-1236(84)90021-1
[14] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach spaces, John Wiley & Sons, Inc., New York, 1993. · Zbl 0782.46019
[15] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London, 1999. · Zbl 1034.46504
[16] J. Diestel and J. J. Uhl, Vector meausres, American Mathematical Society, Providence, RI, 1977. · Zbl 0369.46039
[17] P. N. Dowling, Z. Hu and D. Mupasiri, Complex convexity in Lebesgue-Bochner function spaces, Transactions of the American Mathematical Society 348 (1996), 127–139. · Zbl 0845.46018 · doi:10.1090/S0002-9947-96-01508-5
[18] J. Ferrera, Norm-attaining polynomials and differentiability, Studia Mathematica 151 (2002), 1–21. · Zbl 1006.46034 · doi:10.4064/sm151-1-1
[19] V. P. Fonf, J. Lindenstrauss and R. R. Phelps, Infinite dimensional convexity, Handbook of the Geometry of Banach Spaces, Vol. 1, W.B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 599–670. · Zbl 1086.46004
[20] P. Foralewski and P. Kolwicz, Local uniform rotundity in Calderón-Lozanovskiĭ spaces, Journal of Convex Analysis 14 (2007), 395–412. · Zbl 1159.46018
[21] T. W. Gamelin, Uniform algebras, Chelsea Publishing Company, New York, NY, 1984. · Zbl 0213.40401
[22] N. Ghoussoub, J. Lindenstrauss and B. Maurey, Analytic martingales and plurisubharmonic barriers in complex Banach spaces, Banach space theory (Iowa City, IA, 1987), 111–130, Contemporary Mathematics 85, American Mathematical Society, Providence, RI, 1989, pp. 111–130. · Zbl 0684.46021
[23] J. Globevnik, Boundaries for polydisc algebras in infinite dimensions, Mathematical Proceedings of the Cambridge Philosophical Society 85 (1979), 291–303. · Zbl 0395.46040 · doi:10.1017/S0305004100055705
[24] J. Globevnik, On complex strict and uniform convexity, Proceedings of the American Mathematical Society 47 (1975), 175–178. · Zbl 0307.46015 · doi:10.1090/S0002-9939-1975-0355564-9
[25] J. Globevnik, On interpolation by analytic maps in infinite dimensions, Mathematical Proceedings of the Cambridge Philosophical Society 83 (1978), 243–252. · Zbl 0369.46051 · doi:10.1017/S0305004100054505
[26] L. Romero Grados and L. A. Moraes, Boundaries for algebras of holomorphic functions, Journal of Mathematical Analysis and Applications 281 (2003), 575–586. · Zbl 1037.46051 · doi:10.1016/S0022-247X(03)00150-1
[27] H. Hudzik, A. Kamińska and M. Mastyło, On geometric properties of Orlicz-Lorentz spaces, Canadian Mathematical Bulletin 40 (1997), 316–329. · Zbl 0903.46014 · doi:10.4153/CMB-1997-038-6
[28] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 1–84. · Zbl 1011.46009
[29] R. Larsen, Banach Algebras, Marcel-Dekker, Inc., New York, 1973.
[30] H. J. Lee, Complex convexity and monotonicity in quasi-Banach lattices, Israel Journal of Mathematics 159 (2007), 57–91. · Zbl 1129.46001 · doi:10.1007/s11856-007-0038-2
[31] H. J. Lee, Monotonicity and complex convexity in Banach lattices, Journal of Mathematical Analysis and Applications 307 (2005), 86–101. · Zbl 1083.46011 · doi:10.1016/j.jmaa.2005.01.017
[32] H. J. Lee, Randomized series and geometry of Banach spaces, Taiwanese Journal of Mathematics, to appear. · Zbl 1228.46011
[33] A. Rodríguez-Palacios, Numerical ranges of uniformly continuous functions on the unit sphere of a Banach space, Special issue dedicated to John Horváth. Journal of Mathematical Analysis and Applications 297 (2004), 472–476. · Zbl 1068.46005
[34] Šilov, Sur la théorie des idéaux dans les anneaux normés de fonctions, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 900–903. · JFM 66.0108.02
[35] C. Stegall, Optimization and differentiation in Banach spaces, Linear Algebra and its Applications 84 (1986), 191–211. · Zbl 0633.46042 · doi:10.1016/0024-3795(86)90314-9
[36] R. V. Shvydkoy, Geometric aspects of the Daugavet property, Journal of Functional Analysis 176 (2000), 198–212. · Zbl 0964.46006 · doi:10.1006/jfan.2000.3626
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.