×

An elementary proof of a generalization of Bernoulli’s formula. (English) Zbl 1231.11024

Let \((B_k)_{k\geq 0}\) be the Bernoulli numbers. Let \(a>-1\) be a real number, \(a=m+\gamma\), \(m\in{\mathbb Z}\), \(-1<\gamma\leq 0\), and let \[ F_a(N)=\sum_{k=0}^m(-1)^k\binom{a+1}{k}B_kN^{m-k+1}. \] The authors prove that there exists a real number \(C_a\) so that \[ \lim_{N\to\infty}\left[(a+1)\sum_{n=1}^Nn^a-N^\gamma F_a(N)\right]=C_a. \] If \(a\geq 0\) is an integer then the sequence on the left-hand side is identically zero.

MSC:

11B68 Bernoulli and Euler numbers and polynomials

References:

[1] Bernoulli, J.: The Art of Conjecturing . Translated with an introduction and notes by E. Dudley Sylla. The Johns Hopkins University Press, Baltimore 2006. · Zbl 1094.01014
[2] Conway, J.H.; Guy, R.K.: The Book of Numbers . Springer-Verlag, New York 1996, 106. · Zbl 0866.00001
[3] Faulhaber, J.: Academia Algebrae. Darinnien die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden . Johann Ulrich Schönigs, Augsburg 1631. 77
[4] Ireland, K.F.; Rosen, M.I.: A Classical Introduction to Modern Number Theory . Springer-Verlag, New York 1990, 228-230. · Zbl 0712.11001
[5] Knuth, D.E.: Johann Faulhaber and Sums of Powers. Math. Comp. 203 (1993), 277-294. · Zbl 0797.11026 · doi:10.2307/2152953
[6] McGown, K.J.; Parks, H.R.: The Generalization of Faulhaber’s Formula to Sums of Non-Integral Powers. J. Math. Anal. Appl. 330 (2007), 571-575. · Zbl 1176.11004 · doi:10.1016/j.jmaa.2006.08.019
[7] Parks, H.R.: Sums of Non-Integral Powers. J. Math. Anal. Appl. 297 (2004), 343-349. · Zbl 1160.11310 · doi:10.1016/j.jmaa.2004.05.001
[8] Schneider, I.: Johannes Faulhaber 1580-1635 . Birkhäuser Verlag, Basel-Boston-Berlin 1993, 131-159. · Zbl 0786.01020
[9] Whittaker, E.T.; Watson, G.N.: A Course of Modern Analysis . 4th ed., Cambridge University Press, 1969. · Zbl 0108.26903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.