×

Stochastic properties of degenerated quantum systems. (English) Zbl 1191.35221

Summary: We study the Schrödinger equation with degenerated symmetric but not self-adjoint Hamiltonian. The above properties of the quantum Hamiltonian arise in the description of the asymptotic behavior of the regularizing self-adjoint Hamiltonians sequence. A quantum dynamical semigroup corresponding to degenerated Hamiltonian is defined by means of the passage to the limit for the sequence of the regularizing dynamical semigroups. These semigroups are generated by the regularizing self-adjoint Hamiltonians. The necessary and sufficient conditions are obtained for the convergence of the regularizing semigroups sequence. The description of the divergent sequence of semigroups requires the extension of the stochastic process concept. We extend the stochastic process concept onto the family of measurable functions defined on the space endowed with finite additive measure. The above extension makes it possible to describe the structure of the partial limits set of the regularizing semigroups sequence.

MSC:

81S25 Quantum stochastic calculus
47N50 Applications of operator theory in the physical sciences
47D06 One-parameter semigroups and linear evolution equations
35Q40 PDEs in connection with quantum mechanics
Full Text: DOI

References:

[1] Alicki R., Springer Lect. Notes Phys. 286, in: Quantum Dynamical Semigroups and Applications (1987) · doi:10.1007/3-540-18276-4_5
[2] Arsen’ev A. A., Mat. Sbornik. 101 pp 204–
[3] Bogachev V. I., Introduction to the Theory of Measure 1 (2003)
[4] Bogachev V. I., Introduction to the Theory of Measure 2 (2006)
[5] DOI: 10.1007/978-3-662-02313-6 · doi:10.1007/978-3-662-02313-6
[6] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223
[7] Danford N., Linear Operators, Part 1: General Theory (2004)
[8] DOI: 10.1002/cpa.3160200209 · Zbl 0148.37901 · doi:10.1002/cpa.3160200209
[9] DOI: 10.1002/9781118033012 · doi:10.1002/9781118033012
[10] Edwards R. E., Functional Analysis. Theory and Application (1965) · Zbl 0182.16101
[11] DOI: 10.1016/j.physleta.2006.10.029 · Zbl 1197.81119 · doi:10.1016/j.physleta.2006.10.029
[12] Hewitt E., Trans. Amer. Math. Soc. 72 pp 46–
[13] Ioshida K., Functional Analysis (1980)
[14] Kholevo A. S., Probabilistic and Statistical Aspects of Quantum Mechanics (2003) · Zbl 1056.94006
[15] Krein S. G., Linear Differential Equation in Banach Spaces (1967)
[16] Kruzhkov S. N., Matem. Sbornik. 140 pp 450–
[17] Kupsh I., Dokl. Math. 63 pp 266–
[18] Oleynik O. A., Usp. Matem. Nauk. 12 pp 3–
[19] Orlov Y. N., Foundation of Quantification for Degenerated Dynamical Systems (2004)
[20] Panov E. Yu., Matemat. Sbornik. 185 pp 87–
[21] Reed M. C., Functional analysis 1, in: Methods of Modern Mathematical Physics (1972) · Zbl 0242.46001
[22] Plotnikov P. I., Dokl. Math. 71 pp 234–
[23] G. M. Prosperi, The Quantum Measurement Process and the Observation of Quantum Trajectories (Springer, 1984) pp. 301–326.
[24] DOI: 10.1137/S0036141096309046 · Zbl 0924.35004 · doi:10.1137/S0036141096309046
[25] Zh. Sakbaev V., Comput. Math. Math. Phys. 44 pp 1573–
[26] Zh. Sakbaev V., Comput. Math. Math. Phys. 46 pp 683–
[27] Zh. Sakbaev V., Sovrem. Mat. Fundam. Napravl. 21 pp 87–
[28] DOI: 10.1007/BF01197917 · Zbl 0432.47026 · doi:10.1007/BF01197917
[29] Varadarayn V. S., Matem. Sbornik. 55 pp 35–
[30] Vershik A. M., DAN 226 pp 26–
[31] DOI: 10.4213/faa229 · doi:10.4213/faa229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.