×

Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds. (English) Zbl 1193.53118

A hypercomplex manifold [C. P. Boyer, Proc. Am. Math. Soc. 102, No. 1, 157–164 (1988; Zbl 0642.53073)] is a smooth manifold \(M\) together with a triple \((I,J,K)\) of complex structures satisfying the usual quaternionic relations: \(IJ=-JI=K\). Necessarily, the real dimension of a hypercomplex manifold is divisible by 4. In the paper it is presumed that the complex structures \(I,J,K\) act on the right on the tangent bundle \(TM\) of \(M\). This action extends uniquely to the right action of the algebra \(\mathbb{H}\) of quaternions on \(TM\). Let \(M\) be a hypercomplex manifold, and \(G\) a Riemannian metric on \(M\). The metric \(g\) is called quaternionic Hermitian (or hyper-Hermitian) if \(g\) is invariant with respect to the group \(SU(2)\subset \mathbb{H}^\ast\) of unitary quaternions.
Given a quaternionic Hermitian metric \(g\) on a hypercomplex manifold \(M\), the differential form \(\Omega:=-\omega_J+\sqrt{-1}\omega_K\) is considered, where \(\omega_L(A,B):=g(A,B\circ L)\) for any \(L\in \mathbb{H}\) with \(L^2=-1\) and any vector fields \(A,B\) on \(M\). Then \(\Omega\) is a \((2,0)\)-form with respect to the complex structure \(I\). The metric \(g\) on \(M\) is called an HKT-metric (Hyper Kähler with Torsion) if \(\partial \Omega=0\), where \(\partial\) is the usual \(\partial\)-differential on the complex manifold \((M,I)\). HKT-metrics on hypercomplex manifolds first were introduced by P. S. Howe and G. Papadopoulos [Phys. Lett. B 379, 80–86 (1996)].
HKT-metrics on hypercomplex manifolds are analogous in many respects to Kähler metrics on complex manifolds. For example, if any Kähler form \(\omega\) on a complex manifold can be locally written in the form \(\omega=dd^ch\) where \(h\) is strictly plurisubharmonic function called a potential of \(\omega\), and vice versa, an HKT-form \(\Omega\) on a hypercomplex manifold locally admits a potential: it can be written as \(\omega=\partial\partial_JH\), where \(\partial_J=J^{-1}\circ\overline{\partial}\circ J\), and \(H\) is strictly plurisubharmonic function in the quaternionic sense; and the converse is also true.
Motivated by the analogy with the complex case, the authors of the present paper introduce the following quaternionic version of the Calabi problem. Let \((M^{4n},I,J,K)\) be a compact hypercomplex manifold of real dimension \(4n\). Let \(\Omega\) be an HKT-form. Let \(f\) be a real-valued \(C^\infty\) function on \(M\). The quaternionic Calabi problem is to study solvability of the following quaternionic Monge-Ampère equation with an unknown real-valued function \(\varphi\):
\[ (\Omega+\partial\partial_J\varphi)^n=e^f\Omega^n. \]
The authors prove the following lemma.
Lemma 4.9. Assume that \(\varphi\) satisfies the quaternionic Monge-Ampère equation \((\Omega+\partial\partial_J\varphi)^n=e^f\Omega^n\) on a compact manifold \(M\). Then the form \(\Omega+\partial\partial_J\varphi\) belongs to the interior of the cone of (strongly=weakly) \(q\)-positive (2,0)-forms. Hence \(\Omega+\partial\partial_J\varphi\) is an HKT-form.
This means that \(\Omega+\partial\partial_J\varphi\) corresponds to a new HKT-metric. This equation is non-linear elliptic equation of second order. The authors formulate the following conjecture.
Conjecture 1.5. Let us assume that \((M,I)\) admits a holomorphic (with respect to the complex structure \(I\)) non-vanishing \((2n,0)\)-form \(\Theta\). Then the quaternionic Monge-Ampère equation has a \(C^\infty\)-solution \(\varphi\) provided the following necessary condition on the initial data is satisfied:
\[ \int_M(e^f-1)\Omega^n\wedge \overline{\Theta}=0. \]
Then the authors show that under the condition of existence of such \(\Theta\) a solution of the quaternionic Monge-Ampère equation is unique up to a constant.
The main result of the paper is the following:
Corollary 5.7. There exists a constant \(C\) depending on \(M,\Omega\), and \(\|f\|_{C^0}\) only, such that the solution \(\varphi\) satisfying the normalization condition \(\int_M \varphi.\Omega^n\wedge \overline{\Theta}=0\) must satisfy the estimate \(\|\varphi\|_{C^0}\leq C\), where \(\|.\|_{C^0}\) is the maximum norm on \(M\), i.e., \(\|u\|_{C^0}:=max\{|u(x)||x\in M\}\).
The proof of this result is a modification of S.-T. Yau’s argument [Commun. Pure Appl. Math. 31, 339–411 (1978; Zbl 0369.53059)] in the complex case as presented by D. D. Joyce in [Compact manifolds with special holonomy. Oxford: Oxford University Press (2000; Zbl 1027.53052)].
Reviewer: Ioan Pop (Iaşi)

MSC:

53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
35J96 Monge-Ampère equations
32Q25 Calabi-Yau theory (complex-analytic aspects)
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

References:

[1] S. Alesker, Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables, Bulletin des Sciences Mathématiques 127 (2003), 1–35; also: arXiv:math/0104209. · Zbl 1033.15013 · doi:10.1016/S0007-4497(02)00004-0
[2] S. Alesker, Quaternionic Monge-Ampère equations, The Journal of Geometric Analysis 13 (2003), 205–238; also: arXiv:math/0208005. · Zbl 1058.32028
[3] S. Alesker, Valuations on convex sets, non-commutative determinants, and pluripotential theory, Advances in Mathematics 195 (2005), 561–595; also: arXiv:math/0401219. · Zbl 1078.52011 · doi:10.1016/j.aim.2004.08.009
[4] S. Alesker and M. Verbitsky, Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, The Journal of Geometric Analysis 16 (2006), 375–399; also: math.CV/0510140. · Zbl 1106.32023
[5] B. Banos, and A. Swann, Potentials for hyper-Kähler metrics with torsion, Classical Quantum Gravity 21 (2004), 3127–3135; also: arXiv:math/0402366. · Zbl 1062.53037 · doi:10.1088/0264-9381/21/13/004
[6] R. J. Baston, Quaternionic complexes, Journal of Geometry and Physics 8 (1992), 29–52. · Zbl 0764.53022 · doi:10.1016/0393-0440(92)90042-Y
[7] A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
[8] C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proceedings of the American Mathematical Society 102 (1988), 157–164. · Zbl 0642.53073
[9] E. Calabi, Métriques kählériennes et fibrés holomorphes, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 12 (1979), 269–294.
[10] M. M. Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517–530. · Zbl 0681.53037 · doi:10.1088/0951-7715/1/4/002
[11] S. Y. Cheng and S.-T. Yau, The real Monge-Ampère equation and affine flat structures, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980), Science Press, Beijing, 1982, pp. 339–370.
[12] J.-P. Demailly, Complex Analytic and Algebraic Geometry, a book, !file://http://www-fourier.ujf-grenoble.fr/demailly/books.html
[13] G. Grantcharov, and Y. S. Poon, Geometry of hyper-Kähler connections with torsion, Communications in Mathematical Physics 213 (2000), 19–37. · Zbl 0993.53016 · doi:10.1007/s002200000231
[14] Ph. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Intersience, New York, 1978. · Zbl 0408.14001
[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. · Zbl 0562.35001
[16] F. HarveyReese, H. Lawson and Jr. Blaine, Plurisubharmonic Functions in Calibrated Geometries, arXiv:math/0601484.
[17] P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Physics Letters. B 379 (1996), 80–86. · Zbl 1376.53093 · doi:10.1016/0370-2693(96)00393-0
[18] D. D. Joyce, Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000. · Zbl 1027.53052
[19] N. C. Leung and S. Yi, Analytic Torsion for Quaternionic Manifolds and Related Topics, dg-ga/9710022.
[20] M. Obata, Affine connections on manifolds with almost complex, quaternionic or Hermitian structure, Japanese Journal of Mathematics 26 (1955), 43–79. · Zbl 0089.17203
[21] S. Salamon, Quaternionic Manifolds, Communicazione inviata all’Instituto nazionale di Alta Matematica Francesco Severi.
[22] M. Verbitsky, Hypercomplex Varieties, Communications in Analysis and Geometry 7 (1999), 355–396; also: alg-geom/9703016, (1997).
[23] M. Verbitsky, Hyperholomorpic connections on coherent sheaves and stability, 40 pages, math.AG/0107182.
[24] M. Verbitsky, Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory, The Asian Journal of Mathematics 6 (2002), 679–712; also: arXiv:math/0112215. · Zbl 1115.53031
[25] M. Verbitsky, Hypercomplex structures on Kaehler manifolds, GAFA 15 (2005), 1275–1283; also: math.AG/0406390. · Zbl 1091.53027 · doi:10.1007/s00039-005-0537-4
[26] M. Verbitsky, Hypercomplex manifolds with trivial canonical bundle and their holonomy, Moscow Seminar on Mathematical Physics, II, American Mathematical Society Translations 2 (2007), 221; also: math.DG/0406537. · Zbl 1141.53041
[27] M. Verbitsky, Quaternionic Dolbeault complex and vanishing theorems on hyperkahler manifolds, Compositio Mathematica 143 (2007), 1576–1592. · Zbl 1177.53048 · doi:10.1112/S0010437X07002746
[28] M. Verbitsky, Positive forms on hyperkahler manifolds, arXiv:0801.1899, 33 pages. · Zbl 1196.32011
[29] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Communications on Pure and Applied Analysis 31 (1978), 339–411. · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.