×

Airy processes with wanderers and new universality classes. (English) Zbl 1200.60069

The authors consider \(n+m\) nonintersecting Brownian bridges, with \(n\) of them leaving from \(0\) at time \(t=-1\) and returning to \(0\) at time \(t=1\), while the \(m\) remaining ones (wanderers) go from \(m\) points \(a_i\) to \(m\) points \(b_i\). When \(m=0\) and \(n\) becomes very large, the Airy process is known to describe the cloud of particles viewed from any point on the curve \({\mathcal C}:x=\sqrt{2n(1-t^2)}\), with time and space properly rescaled. In the present paper, the authors first keep \(m>0\) fixed and study the statistical fluctuations of the edge of the cloud of particles near any point on the curve \({\mathcal C}\). In the large-\(n\) limit, they obtain a new Airy process with wanderers. This process is governed by an Airy-type kernel, with a rational perturbation.
Letting \(m\) tend to infinity as well, they consider \(m\) wanderers starting from the same point \(\tilde{a}=\alpha m^{1/3}\) and ending up at the same point \(\tilde{b}=\beta m^{1/3}\). This leads to two Pearcy processes about two cusps, a closing and an opening cusp, the location of the tips being related by an elliptic curve. Moreover, upon tuning the starting and target points, the two tips of the cusps can be let growing very close. This leads to a new process, which is conjectured to be governed by a kernel represented as a double integral involving the exponential of a quintic polynomial in the integration variables.

MSC:

60J65 Brownian motion
60B20 Random matrices (probabilistic aspects)
60G60 Random fields
60G10 Stationary stochastic processes

References:

[1] Adler, M., Delépine, J. and van Moerbeke, P. (2009). Dyson’s nonintersecting Brownian motions with a few outliers. Comm. Pure Appl. Math. 62 334-395. · Zbl 1166.60048 · doi:10.1002/cpa.20264
[2] Adler, M. and van Moerbeke, P. (2005). PDEs for the joint distributions of the Dyson, Airy and sine processes. Ann. Probab. 33 1326-1361. · Zbl 1093.60021 · doi:10.1214/009117905000000107
[3] Adler, M. and van Moerbeke, P. (2007). PDEs for the Gaussian ensemble with external source and the Pearcey distribution. Comm. Pure Appl. Math. 60 1261-1292. · Zbl 1193.82012 · doi:10.1002/cpa.20175
[4] Aptekarev, A. I., Bleher, P. M. and Kuijlaars, A. B. J. (2005). Large n limit of Gaussian random matrices with external source. II. Comm. Math. Phys. 259 367-389. · Zbl 1129.82014 · doi:10.1007/s00220-005-1367-9
[5] Baik, J., Ben Arous, G. and Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 1643-1697. · Zbl 1086.15022 · doi:10.1214/009117905000000233
[6] Baik, J. (2006). Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices. Duke Math. J. 133 205-235. · Zbl 1139.33006 · doi:10.1215/S0012-7094-06-13321-5
[7] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206-229. · Zbl 1189.60101 · doi:10.1214/154957806000000078
[8] Bleher, P. M. and Kuijlaars, A. B. J. (2004). Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3 109-129. · Zbl 1082.15035 · doi:10.1155/S1073792804132194
[9] Bornemann, F. (2009). On the numerical evaluation of distributions in random matrix theory: A review with an invitation to experimental mathematics. Available at
[10] Brézin, E. and Hikami, S. (1998). Level spacing of random matrices in an external source. Phys. Rev. E (3) 58 7176-7185. · doi:10.1103/PhysRevE.58.7176
[11] Borodin, A. (1999). Biorthogonal ensembles. Nuclear Phys. B 536 704-732. · Zbl 0948.82018 · doi:10.1016/S0550-3213(98)00642-7
[12] Borodin, A. and Ferrari, P. L. (2008). Large time asymptotics of growth models on space-like paths. I. PushASEP. Electron. J. Probab. 13 1380-1418. · Zbl 1187.82084
[13] Borodin, A., Ferrari, P. L., Prähofer, M. and Sasamoto, T. (2007). Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 1055-1080. · Zbl 1136.82028 · doi:10.1007/s10955-007-9383-0
[14] Borodin, A., Ferrari, P. L. and Sasamoto, T. (2009). Two speed TASEP. Available at · Zbl 1183.82062
[15] Borodin, A. and Péché, S. (2008). Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132 275-290. · Zbl 1145.82021 · doi:10.1007/s10955-008-9553-8
[16] Borodin, A. and Rains, E. M. (2005). Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121 291-317. · Zbl 1127.82017 · doi:10.1007/s10955-005-7583-z
[17] Daems, E. and Kuijlaars, A. B. J. (2007). Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 146 91-114. · Zbl 1135.42324 · doi:10.1016/j.jat.2006.12.001
[18] Delvaux, S. and Kuijlaars, A. (2009). A phase transition for non-intersecting Brownian motions, and the Painlevé II equation. Available at · Zbl 1182.60023 · doi:10.1093/imrn/rnp069
[19] Dyson, F. J. (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. · Zbl 0111.32703 · doi:10.1063/1.1703862
[20] Eynard, B. and Mehta, M. L. (1998). Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31 4449-4456. · Zbl 0938.15012 · doi:10.1088/0305-4470/31/19/010
[21] Ferrari, P. L. (2004). Shape fluctuation of crystal facets and surface growth in one dimension. Ph.D. thesis, Technical Univ. Munich. Available at http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2004/ferrari.html.
[22] Ferrari, P. L. and Spohn, H. (2003). Step fluctuations for a faceted crystal. J. Stat. Phys. 113 1-46. · Zbl 1116.82331 · doi:10.1023/A:1025703819894
[23] Imamura, T. and Sasamoto, T. (2007). Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition. J. Stat. Phys. 128 799-846. · Zbl 1136.82029 · doi:10.1007/s10955-007-9326-9
[24] Johansson, K. (2003). Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 277-329. · Zbl 1031.60084 · doi:10.1007/s00220-003-0945-y
[25] Johansson, K. (2006). Random matrices and determinantal processes. In Mathematical Statistical Physics , Session LXXXIII (A. Bovier et al., eds.) 1-56. Elsevier, Amsterdam. · Zbl 1411.60144
[26] Johansson, K. (2001). Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 683-705. · Zbl 0978.15020 · doi:10.1007/s002200000328
[27] Johansson, K. (2003). Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 277-329. · Zbl 1031.60084 · doi:10.1007/s00220-003-0945-y
[28] Johansson, K. (2005). The arctic circle boundary and the Airy process. Ann. Probab. 33 1-30. · Zbl 1096.60039 · doi:10.1214/009117904000000937
[29] Johansson, K. (2005). Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier ( Grenoble ) 55 2129-2145. · Zbl 1083.60079 · doi:10.5802/aif.2155
[30] Karlin, S. and McGregor, J. (1959). Coincidence probabilities. Pacific J. Math. 9 1141-1164. · Zbl 0092.34503 · doi:10.2140/pjm.1959.9.1141
[31] Lyons, R. (2003). Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98 167-212. · Zbl 1055.60003 · doi:10.1007/s10240-003-0016-0
[32] Nagao, T. and Forrester, P. J. (1998). Multilevel dynamical correlation functions for Dyson’s Brownian motion model of random matrices. Phys. Lett. A 247 42-46.
[33] Okounkov, A. and Reshetikhin, N. (2007). Random skew plane partitions and the Pearcey process. Comm. Math. Phys. 269 571-609. · Zbl 1115.60011 · doi:10.1007/s00220-006-0128-8
[34] Pastur, L. A. (1972). The spectrum of random matrices. Teoret. Mat. Fiz. 10 102-112.
[35] Péché, S. (2006). The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134 127-173. · Zbl 1088.15025 · doi:10.1007/s00440-005-0466-z
[36] Prähofer, M. and Spohn, H. (2002). Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108 1071-1106. · Zbl 1025.82010 · doi:10.1023/A:1019791415147
[37] Tracy, C. A. and Widom, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92 809-835. · Zbl 0942.60099 · doi:10.1023/A:1023084324803
[38] Tracy, C. A. and Widom, H. (2004). Differential equations for Dyson processes. Comm. Math. Phys. 252 7-41. · Zbl 1124.82007 · doi:10.1007/s00220-004-1182-8
[39] Tracy, C. A. and Widom, H. (2006). The Pearcey process. Comm. Math. Phys. 263 381-400. · Zbl 1129.82031 · doi:10.1007/s00220-005-1506-3
[40] Soshnikov, A. (2000). Determinantal random point fields. Uspekhi Mat. Nauk 55 107-160. · Zbl 0991.60038 · doi:10.1070/rm2000v055n05ABEH000321
[41] Spohn, H. (2006). Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Phys. A 369 71-99. · doi:10.1016/j.physa.2006.04.006
[42] Zinn-Justin, P. (1997). Random Hermitian matrices in an external field. Nuclear Phys. B 497 725-732. · Zbl 0933.82022 · doi:10.1016/S0550-3213(97)00307-6
[43] Zinn-Justin, P. (1998). Universality of correlation functions of Hermitian random matrices in an external field. Comm. Math. Phys. 194 631-650. · Zbl 0912.15028 · doi:10.1007/s002200050372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.