×

Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. (English) Zbl 1193.60114

The paper investigates the meta-stability in large volumes at low temperatures for Ising spins subject to Glauber’s spin-flip dynamics on the one hand; and for lattice gas particles subject to Kawasaki’s hopping dynamics, on the other hand. By using a suitable generalization of the potential-theoretic approach to meta-stability, one can so extend to large volumes some results which have been already obtained for small volumes. The main mathematical tools so involved are the Dirichlet problems associated with the dynamics, the definition of the Green function in terms of capacities and equilibrium potentials, and variational principles applied to these capacities. The problem is considered for both the Glauber’s and the Kawasaki’s dynamics; but it is much more difficult in the later case as a result of the fact that the corresponding dynamics is conservative.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

References:

[1] Ben Arous, G. and Cerf, R. (1996). Metastability of the three-dimensional Ising model on a torus at very low temperatures. Electron. J. Probab. 1 10. · Zbl 0888.60057
[2] Berman, K. A. and Konsowa, M. H. (1990). Random paths and cuts, electrical networks, and reversible Markov chains. SIAM J. Discrete Math. 3 311-319. · Zbl 0705.05047 · doi:10.1137/0403026
[3] Bianchi, A., Bovier, A. and Ioffe, D. (2009). Sharp asymptotics for metastability in the random field Curie-Weiss model. Electron. J. Probab. 14 1541-1603. · Zbl 1186.82069
[4] Bovier, A. (2006). Metastability: A potential theoretic approach. In International Congress of Mathematicians. Vol. III 499-518. Eur. Math. Soc., Zürich. · Zbl 1099.60052
[5] Bovier, A. (2009). Metastability. In Methods of Contemporary Mathematical Statistical Physics (R. Kotecký, ed.). Lecture Notes in Math. 1970 . Springer, Berlin. · Zbl 1180.82008
[6] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2002). Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228 219-255. · Zbl 1010.60088 · doi:10.1007/s002200200609
[7] Bovier, A., den Hollander, F. and Nardi, F. R. (2006). Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Probab. Theory Related Fields 135 265-310. · Zbl 1099.60066 · doi:10.1007/s00440-005-0460-5
[8] Bovier, A. and Manzo, F. (2002). Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. J. Statist. Phys. 107 757-779. · Zbl 1067.82041 · doi:10.1023/A:1014586130046
[9] Cerf, R. and Manzo, F. (2008). Private communication.
[10] Dehghanpour, P. and Schonmann, R. H. (1997). Metropolis dynamics relaxation via nucleation and growth. Comm. Math. Phys. 188 89-119. · Zbl 0882.60094 · doi:10.1007/s002200050158
[11] Dehghanpour, P. and Schonmann, R. H. (1997). A nucleation-and-growth model. Probab. Theory Related Fields 107 123-135. · Zbl 0866.60086 · doi:10.1007/s004400050079
[12] Gaudillière, A., den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2009). Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Process. Appl. 119 737-774. · Zbl 1158.60043 · doi:10.1016/j.spa.2008.04.008
[13] Gaudillière, A., den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2009). Droplet dynamics in a two-dimensional rarified gas under Kawasaki dynamics. Unpublished manuscript. · Zbl 1158.60043
[14] Gaudillière, A., den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2009). Homogeneous nucleation for two-dimensional Kawasaki dynamics. To pappear. · Zbl 1158.60043
[15] den Hollander, F. (2004). Metastability under stochastic dynamics. Stochastic Process. Appl. 114 1-26. · Zbl 1075.60127 · doi:10.1016/j.spa.2004.07.007
[16] den Hollander, F. (2009). Three lectures on metastability under stochastic dynamics. In Methods of Contemporary Mathematical Statistical Physics (R. Kotecký, ed.). Lecture Notes in Math. 1970 . Springer, Berlin. · Zbl 1180.82038
[17] den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2003). Droplet growth for three-dimensional Kawasaki dynamics. Probab. Theory Related Fields 125 153-194. · Zbl 1040.60083 · doi:10.1007/s00440-002-0233-3
[18] den Hollander, F., Olivieri, E. and Scoppola, E. (2000). Metastability and nucleation for conservative dynamics. J. Math. Phys. 41 1424-1498. · Zbl 0977.82030 · doi:10.1063/1.533193
[19] Kotecký, R. and Olivieri, E. (1993). Droplet dynamics for asymmetric Ising model. J. Statist. Phys. 70 1121-1148. · Zbl 1081.82591 · doi:10.1007/BF01049425
[20] Lawler, G. F. (1991). Intersections of Random Walks . Birkhäuser, Boston. · Zbl 1228.60004
[21] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939-995. · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[22] Neves, E. J. and Schonmann, R. H. (1991). Critical droplets and metastability for a Glauber dynamics at very low temperatures. Comm. Math. Phys. 137 209-230. · Zbl 0722.60107 · doi:10.1007/BF02431878
[23] Olivieri, E. and Vares, M. E. (2005). Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications 100 . Cambridge Univ. Press, Cambridge. · Zbl 1075.60002 · doi:10.1017/CBO9780511543272
[24] Schonmann, R. H. and Shlosman, S. B. (1998). Wulff droplets and the metastable relaxation of kinetic Ising models. Comm. Math. Phys. 194 389-462. · Zbl 0915.60090 · doi:10.1007/s002200050363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.