×

Benzenoid links. (English) Zbl 1197.92058

Summary: We study new configurations of benzenoid hydrocarbons, called benzenoid links. Roughly speaking, a primitive corofusene is a closed narrow hexagonal ribbon with out-of-plane curvature 0. A primitive corofusene or the union of disjoint primitive corofusenes in \({\mathbb{R}^{3}}\) is called a benzenoid link. We determine the minimum number of hexagons needed for a nontrivial benzenoid link in different senses. We also determine the structures of the smallest and the second smallest nontrivial benzenoid links of different types and their numbers of Kekulé structures. We list all the benzenoid Hopf links of type III with 22–25 hexagons by their canonical codes in the appendix.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
51E12 Generalized quadrangles and generalized polygons in finite geometry
05C90 Applications of graph theory
52C99 Discrete geometry
Full Text: DOI

References:

[1] Silver D.S.: Knot theory’s odd origins. Am. Sci. 44, 158–165 (2006)
[2] Kauffman L.H.: Knots and Physics. World Scientific Publishing Co., Singapore (2001) · Zbl 1057.57001
[3] Liu L.F., Depew R.E., Wang J.C.: Knotted single-stranded DNA rings: a novel topological isomer of circular single-stranded DNA formed by treatment with Escherichia coliomega protein. J. Mol. Biol. 106(2), 439–452 (1976) · doi:10.1016/0022-2836(76)90095-4
[4] Sumners D.W.L.: Knot theory and DNA, proc. Symp. Appl. Math. 45, 39–72 (1992) · Zbl 0772.57014
[5] Bates A.D., Maxwell A.: DNA Topology. Oxford University Press, Oxford (1993)
[6] Liang C., Mislow K.: Knots in proteins. J. Am. Chem. Soc. 116, 11189–11190 (1994) · doi:10.1021/ja00103a057
[7] Taylor W.R.: A deeply knotted protein structure and how it might fold. Nature 406, 916–919 (2000) · doi:10.1038/35022623
[8] Frisch H.L., Wassermann E.: Chemical topology. J. Am. Chem. Soc. 83, 3789–3795 (1961) · doi:10.1021/ja01479a015
[9] Delbruck M.: Proc. Symp. Appl. Math. 14, 55 (1962)
[10] M.D. Frank-Kamenetskii, A.V. Lukashin, Statistical mechanics and topology of polymer chains, A.V. Vologodskii, Nature 258, 398 (1975)
[11] Dietrich-Buchecker C.O., Sauvage J.P: A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. 28, 189 (1989) · doi:10.1002/anie.198901891
[12] Raymo F.M., Stoddart J.F.: Interlocked macromolecules. Chem. Rev. 99, 1643–1663 (1999) · doi:10.1021/cr970081q
[13] Hoskins B.F., Robson R.: Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. J. Am. Chem. Soc. 112, 1546–1554 (1990) · doi:10.1021/ja00160a038
[14] Zhadanov H.S., Rend C.: Acad. Sci. URSS 31, 350–354 (1941)
[15] Konnert J., Britton D.: The crystal structure of AgC(CN)3 inorg. Chem. 5, 1193–1196 (1966)
[16] Adams H. et al.: Knot tied around an octahedral metal centre. Nature 411, 763 (2001) · doi:10.1038/35081143
[17] Lukin O. et al.: Knotaxanes–Rotaxanes with knots as stoppers. Angew. Chem. Int. Ed. 42, 4542–4545 (2003) · doi:10.1002/anie.200351981
[18] Lukin O. et al.: Topologically chiral covalent assemblies of molecular knots with linear, branched, and cyclic architectures. Chem. Eur. J. 10, 2804–2810 (2004) · doi:10.1002/chem.200400110
[19] Balzani V. et al.: Artificial molecular machines, angew. Chem. Int. Ed. 39, 3348–3391 (2000)
[20] Flappan E.: When Topology Meets Chemistry. Cambridge University Press, Cambridge (2000)
[21] Deza M., Dutour M., Flowler P.W.: Zigzags, railroads, and knots in fullerenes. J. Chem. Inf. Comput. Sci. 44, 1282–1293 (2004)
[22] Mezey P.G.: Tying knots around chiral centers: chirality polynomials and conformational invariants for molecules. J. Am. Chem. Soc. 108, 3976–3984 (1986) · doi:10.1021/ja00274a020
[23] Clar E.: Polycyclic Hydrocarbons, Vol. I–II. Academic Press, London (1964)
[24] Balaban A.T., Banciu M., Ciorba V.: Annulenes, Benzo-, Hetero-, Homo-, Derivatives, and their Valence Isomers, Volumes I–III. CRC, Boca-Raton (1987)
[25] Cyvin S.J., Gutman I.: Kekule Structures in benzenoid Hydrocarbons. Springer-verlag, Berlin (1988) · Zbl 0663.05034
[26] Gutman I., Cyvin S.J.: Introduction to the Theory of Benzenoid Hydrocarbons. Springer-verlag, Berlin (1989) · Zbl 0722.05056
[27] Harvey R.G.: Polycyclic Aromatic Hydrocarbons. Wiley-VCH, New York (1997)
[28] Hopf H.: Classics in Hydrocarbon Chemistry. Wiley-VCH, Weinheim (2000)
[29] D. Astruc (ed.), Modern Arene Chemistry (Wiley-VCH, Weinheim, 2002)
[30] Diederich F., Staab H.A.: Benzenoid versus annulenoid aromaticity synthesis and properties of kekulene. Angew. Chem. Int. Ed. Engl. 17, 372 (1978) · doi:10.1002/anie.197803721
[31] Krieger C. et al.: Molecular structure and spectroscopic properties of kekulene. Angew. Chem. Int. Ed. Engl. 18, 699 (1979) · doi:10.1002/anie.197906991
[32] Schweitzer C. et al.: Electronic properties of kekulene. Mol. Phys. 46, 1141 (1982) · doi:10.1080/00268978200101861
[33] Staab H.A., Diederich F.: cycloarenes, a new class of aromatic compounds-I–synthesis of kekulene. Chem. Ber. 116, 3487 (1983) · doi:10.1002/cber.19831161021
[34] Staab H.A. et al.: cycloarenes, a new class of aromatic compounds-II–molecular structure and spectroscopic properties of kekulene. Chem. Ber. 116, 3504 (1983) · doi:10.1002/cber.19831161022
[35] Staab H.A. et al.: cycloarenes, a new class of aromatic compounds-III–studies towards the synthesis of cyclo [d.e.d.e.e.d.e.d.e.e] decakisbenzene. Chem. Ber. 116, 2262 (1983)
[36] Ege G., Fischer H.: Zuer konjugation in makrocyclischen bindungs-system-VI–SCF-MO-Berechnung der Bindungsabstände in makrocyclischen Bindungssystemen. Tetrahedron 23, 149 (1967) · doi:10.1016/S0040-4020(01)83295-6
[37] Ege G., Fischer H.: Zuer konjugation in makrocyclischen Bindungs-system XX-Charakterordnung, magnetische Suszeptibilitäten und chemische Verschiebungen von Corannulenen. Theor. Chim. Acta 26, 55 (1972a) · doi:10.1007/BF00527653
[38] Vogler H.: Calculation of H-chemical shifts of kekulene and similar compounds. Tetrahedron Lett. 20, 229 (1979) · doi:10.1016/S0040-4039(01)85931-1
[39] Vogler H.: Zero-field splitting parameters D of macrocyclic systems. Croat. Chem. Acta 53, 667 (1980)
[40] Vogler H.: Theoretical study of geometries and 1H-chemical shifts of cycloarenes. J. Mol. Struct. (Theochem) 122, 333 (1985) · doi:10.1016/0166-1280(85)80095-6
[41] Randić M.: On the role of kekule valence structures. Pure Appl. Chem. 55, 347 (1983) · doi:10.1351/pac198855020347
[42] Cyvin S.J. et al.: Kekule structure counts: general formulations for primitive coronoid hydrocarbons. Monatsh Chem. 122, 435 (1991) · doi:10.1007/BF00809795
[43] Zhang F.J., Cyvin S.J., Cyvin B.N.: ”Crowns”, and aromatic sextets in primitive coronoid hydracarbons. Monatsh Chem. 121, 421 (1990) · doi:10.1007/BF00809459
[44] Zhang F.J., Zheng M.L.: Generalized hexagonal systems with each hexagon being resonant. Discrete Appl. Math. 36, 67 (1992) · Zbl 0774.05077 · doi:10.1016/0166-218X(92)90205-O
[45] Zhang F.J., Chem R.S., Cyvin S.J.: A complete solution of Hosoya’s mystery. Acta. Math. Appl. Sinica. 12, 263–271 (1996) · Zbl 0857.05087
[46] Cyvin B.N., Brunvoll J.: Enumeration of benzenoid systems and other polyhexes. In: Gutman, I., Cyvin, S.J. (eds) Advances in the Theory of Benzenoid Hydrocarbons II, Topics in Current Chemistry, vol 162, pp. 65. Springer-Verlag, Berlin (1992b)
[47] S.J. Cyvin, J. Brunvoll, B.N. Cyvin, Theory of Coronoid Hydrocarbons. Lecture Notes Chem., vol. 54 (Springer-Verlag, Berlin, 1991) · Zbl 0665.05051
[48] S.J. Cyvin, J. Brunvoll, R.S. Chem, B.N. Cyvin, F.J. Zhang, Theory of Coronoid Hydrocarbons II. Lecture Notes Chem., vol. 62 (Springer-Verlag, Berlin, 1994)
[49] Newman M.S., Lednicer D.: The synthesis and resolution of hexahelicene. J. Am. Chem. Soc. 78, 4765 (1956) · doi:10.1021/ja01599a060
[50] Cyvin B.N., Guo X.F., Cyvin S.J., Zhang F.J.: Enumeration of helicenes. Chem. Phys. Lett. 188, 537 (1992) · Zbl 1056.92538 · doi:10.1016/0009-2614(92)80862-6
[51] Cyvin S.J., Cyvin B.N.: Theory of helicenic hydrocarbons-part 2- chemical formulas. Struct. Chem. 4, 303 (1993) · Zbl 0779.92024 · doi:10.1007/BF00681204
[52] Cyvin S.J., Zhang F.J., Cyvin B.N., Guo X.F.: Theory of helicenic hydrocarbons-part 1- invariants and symmetry. Struct. Chem. 4, 149 (1993) · Zbl 0783.92031 · doi:10.1007/BF00679341
[53] Flammang-barbieux M., Nasielski J., Martin R.H.: Sythesis of heptahelicene (1) benzo [c] phenanthro[4,3-g] phenanthrene. Tetrahedron 8(8), 743–744 (1967) · doi:10.1016/S0040-4039(00)90586-0
[54] Martin R.H. et al.: 1-synthesis of octa- and nonahelicenes. 2- new syntheses of hexa- and heptahelicenes. 3- optical rotation and O.R.D of heptahelicene. Tetrahedron 9(31), 507–3510 (1968)
[55] P.L. Pauson, B.J. Williams, Cyclopentadienes, fulvenes, and fulvalenes, Part I. A hexapheny fulvalene. J. Chem. Soc. 4153–4157 (1961)
[56] Misra A., Klein D.J.: Characterization of cyclo-polyphenacenes. J. Chem. Inf. Comput. Sci. 42, 1171–1175 (2002)
[57] Dobrowolski J.Cz.: On the belt and moebius isomers of the coronene molecule. J. Chem. Inf. comput. Sci. 42, 490–499 (2002)
[58] Wang L., Zhang F., Zhao H.: On the ordering of benzenoid chains and cyclo-polyphenacenes with respect to their numbers of clar aromatic sextets. J. Math. Chem. 38(2), 293–309 (2005) · Zbl 1217.92096 · doi:10.1007/s10910-005-5423-7
[59] Klein D.J., Misra A.: Topological isomer generation & enumeration: application for polyphenacenes. Commun. Math. Comp. Chem. (MatCh) 46, 45–69 (2002) · Zbl 1044.92056
[60] Fujioka Y.: Syntheses and physical properties of several polyphenylenes containin mixed linkages. Bull. Chem. Soc. Jpn. 57, 3494–3506 (1984) · doi:10.1246/bcsj.57.3494
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.