×

Regularization methods for a Cauchy problem for a parabolic equation in multiple dimensions. (English) Zbl 1186.35243

Summary: We study a Cauchy problem for a parabolic equation in multiple dimensions, which is naturally a generalization of some one-dimensional and two-dimensional inverse heat conduction problems. This is a severely ill-posed problem, i.e., the solution (if it exists) does not depend continuously on the data. After simply analyzing the ill-posedness of the Cauchy problem in the frequency space, from a new viewpoint we propose two regularization methods: Tikhonov method and Fourier truncation method. We give and prove the convergence estimate between the exact solution and its regularized approximation. We also discuss the relationship of these two and other regularization methods. At last, we employ some numerical examples to illustrate the behavior of the proposed methods.

MSC:

35R30 Inverse problems for PDEs
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R25 Ill-posed problems for PDEs
80A23 Inverse problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] DOI: 10.1137/0142040 · Zbl 0498.35084 · doi:10.1137/0142040
[2] DOI: 10.1088/0266-5611/3/2/009 · Zbl 0645.35094 · doi:10.1088/0266-5611/3/2/009
[3] DOI: 10.1088/0266-5611/4/1/008 · Zbl 0697.35060 · doi:10.1088/0266-5611/4/1/008
[4] DOI: 10.1088/0266-5611/11/4/017 · Zbl 0839.35143 · doi:10.1088/0266-5611/11/4/017
[5] DOI: 10.1115/1.2824112 · doi:10.1115/1.2824112
[6] DOI: 10.1137/S1064827597331394 · Zbl 0959.65107 · doi:10.1137/S1064827597331394
[7] DOI: 10.1016/j.cam.2003.10.011 · Zbl 1055.65106 · doi:10.1016/j.cam.2003.10.011
[8] DOI: 10.1016/S0893-9659(03)00024-7 · Zbl 1052.35068 · doi:10.1016/S0893-9659(03)00024-7
[9] DOI: 10.1088/0266-5611/24/6/065003 · Zbl 1160.30023 · doi:10.1088/0266-5611/24/6/065003
[10] DOI: 10.1088/0266-5611/7/2/008 · Zbl 0731.65108 · doi:10.1088/0266-5611/7/2/008
[11] DOI: 10.1007/s002110050073 · Zbl 0817.65041 · doi:10.1007/s002110050073
[12] DOI: 10.1088/0266-5611/13/2/007 · Zbl 0871.35105 · doi:10.1088/0266-5611/13/2/007
[13] DOI: 10.1088/0266-5611/11/6/009 · Zbl 0845.35130 · doi:10.1088/0266-5611/11/6/009
[14] DOI: 10.2514/3.49417 · doi:10.2514/3.49417
[15] DOI: 10.1002/mma.1670100507 · Zbl 0671.35077 · doi:10.1002/mma.1670100507
[16] DOI: 10.1088/0266-5611/15/3/307 · Zbl 0932.35200 · doi:10.1088/0266-5611/15/3/307
[17] DOI: 10.2307/2034314 · Zbl 0098.06602 · doi:10.2307/2034314
[18] DOI: 10.1016/0898-1221(94)00251-F · Zbl 0821.65083 · doi:10.1016/0898-1221(94)00251-F
[19] DOI: 10.1088/0266-5611/23/3/013 · Zbl 1118.35073 · doi:10.1088/0266-5611/23/3/013
[20] DOI: 10.1080/17415970600725128 · Zbl 1202.80017 · doi:10.1080/17415970600725128
[21] DOI: 10.1016/0377-0427(95)00073-9 · Zbl 0858.65099 · doi:10.1016/0377-0427(95)00073-9
[22] DOI: 10.1088/0266-5611/13/4/014 · Zbl 0883.35123 · doi:10.1088/0266-5611/13/4/014
[23] J. Inv. Ill-Posed Problems 8 pp 31– (2000)
[24] DOI: 10.1088/0266-5611/22/3/015 · Zbl 1099.35160 · doi:10.1088/0266-5611/22/3/015
[25] DOI: 10.1088/0266-5611/6/4/013 · Zbl 0726.35053 · doi:10.1088/0266-5611/6/4/013
[26] DOI: 10.1016/j.jmaa.2005.03.037 · Zbl 1087.35095 · doi:10.1016/j.jmaa.2005.03.037
[27] DOI: 10.1016/j.cam.2005.04.022 · Zbl 1096.65097 · doi:10.1016/j.cam.2005.04.022
[28] DOI: 10.1016/j.cam.2006.02.014 · Zbl 1113.65096 · doi:10.1016/j.cam.2006.02.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.