×

Equivariant Poincaré duality for quantum group actions. (English) Zbl 1191.58003

Replacing ordinary tensor products by braided tensor products, the notion of Poincaré duality in KK-theory to the setting of quantum group action is presented. As an example, the standard Podleś sphere is shown to be equivariantly Poincaré dual to itself with respect to the natural action of \(SU_q(2)\) (Th. 6.5). The Drinfeld double of \(SU_q(2)\), appearing as the symmtry group in this case, is the quantum Lorentz group [P. Podleś and S. L. Woronowicz, Commun. Math. Phys. 130, No. 2, 381–431 (1990; Zbl 0703.22018)], a noncompact quantum group built up out of a compact and a discrete part. The authors remark that the additional symmetry of the Podleś sphere which is encoded in the discrete part of the quantum group is not visible classically.
Precisely, equivariant Poincaré duality is defined as follows: Let \(G\) be a regular locally compact quantum group, \(D(G)\) is its Drinfeld double. The two \(G\)-Yetter-Drinfeld algebras (\(G\)-YD-algebras, Def. 3.1) \(P\) and \(Q\) are called \(G\)-equivariantly Poincaré dual to each other if there exists a natural isomorphism
\[ KK^{D(G)}_*(P\boxtimes_G A,B)\cong KK^{D(G)}_*(A, Q\boxtimes_G B) \]
for all \(G\)-YD-algebras \(A\) and \(B\) (Def. 6.1). Here, \(A\boxtimes_GB\) means the braided tensor product of a \(G\)-YD-algebra with a \(G\)-\(C^*\)-algebra \(B\) (Def. 3.3).
The outline of the paper is as follows: In §2, basic definitions and results from the theory of locally compact quantum groups are reviewed and notations in this paper are fixed [cf. J. Kustermans, Int. J. Math. 12, No. 3, 289–338 (2001; Zbl 1111.46311) and J. Kustermans and S. Vaes, Math. Scand. 92, No. 1, 68–92 (2003; Zbl 1034.46067)]. Then, the \(H\)-\(C^*\)-algebra \(\text{res}^G_H(B)\), where \(H\to G\) is a morphism of quantum groups and \(B\) a \(G\)-\(C^*\)-algebra with coaction \(\beta: B\to M(C^r_0(G)\otimes B)\), and \(G\)-\(C^*\)-algebra \(\text{ind}^G_H(B)\), where \(G\) is a strongly regular quantum group, \(H\subset G\) is a closed quantum subgroup and \(B\) is an \(H\)-\(C^*\)-algebra are introduced. \(\text{ind}^G_H\) satisfies
\[ \text{ind}^G_H(B)\cong \text{ind}^G_K\text{ind}^K_H(B),\qquad H\subset K\subset G, \]
by virtue of Vaes’ quantum version of Green’s imprimitivity theorem [Th. 2.6. in S. Vaes, J. Funct. Anal. 229, No. 2, 317–374 (2005; Zbl 1087.22005). The authors say that not only the results, but also the techniques developed in this paper rely at several points on this paper]. It is also shown
\[ \text{ind}^G_H(C^r_0(H)\otimes B)\cong \text{ind}^G_E \text{res}^H_E(B)= C^r_0(G)\otimes B, \]
if \(E\) is the trivial group. By these facts, the functor \(\text{ind}^G_H: H\text{-Alg}\to G\)-Alg is obtained.
§3 deals with YD-\(C^*\)-algebras and braided tensor product. It is remarked that a YD module in the algebraic setting [S. Majid, Foundations of quantum group theory. Cambridge: Cambridge Univ. Press (1995; Zbl 0857.17009)] works with the opposite comultiplication on the dual. If \(G\) is an ordinary locally compact group, then every \(G\)-\(C^*\)-algebra becomes a \(G\)-YD-algebra. By using the Drinfeld double \(D(G)\); \(C^r_0(D(G))= C^r_0(G)\otimes C^*_r(G)\), a \(G\)-YD-\(C^*\)-algebra is the same thing as a \(D(g)\)-\(C^*\)-algebra if \(G\) is a loclly compact quantum group (Prop. 3.2). Let \(G\) be a locally compact quantum group, \(A\), \(B\) are its \(G\)-YD-algebra and \(G\)-\(C^*\)-algebra, respectively. Then, \(*\)-homomorphisms \(\iota_A=\lambda_{12}: A\to \mathbb{L}(\mathbb{H}_G\otimes A\otimes B)\), \(\iota_B= \beta_{13}: B\to \mathbb{L}(\mathbb{H}_G\otimes A\otimes B)\) are defined. The braided tensor product \(A\boxtimes_G B\) is the \(C^*\)-subalgebra of \(\mathbb{L}(\mathbb{H}_G\otimes A\otimes B)\) generated by \(\{\iota_A(a)\iota_B(b)\mid a\in A,b\in B\}\) (Def. 3.3). The braided tensor product is compatible with restriction and induction:
\[ \text{ind}^G_H(A\boxtimes_H \text{res}^G_H(B))\cong \text{ind}^G_H(A)\boxtimes_G B \]
(Th. 3.6). Definition and stablity properties of braided tensor products of Hilbert modules (Prop. 3.7) are also explained in this section.
In §4, the \(S\)-equivariant Kasparov group \(KK^S(A,B)\), \(S\) a Hopf \(C^a\)st-algebra and \(A\), \(B\) are graded \(S\)-\(C^*\)-algebras, is defined according to S. Baaj and G. Skandalis [K-Theory 2, No. 6, 683–721 (1989; Zbl 0683.46048) (Def. 4.1)]. If \(G\) is a regular locally compact quantum group, then there is an alternative definition of \(KK^G(A,B)\), which is given as Th. 4.3 [R. Meyer,, K-Theory 21, No. 3, 201–228 (2000; Zbl 0982.19004)]. By using this definition, the category \(KK^G\) is shown to be a triangulated category [Prop. 4.5. in R. Meyer and R. Nest, Topology 45, No. 2, 209–259 (2006; Zbl 1092.19004)]. Then, applying the braided tensor product, the exterior product in equivariant Kasparove theory is introduced (Prop. 4.8, 4.9). This exterior Kasparov products has analogous properties to the ordinary exterior Kasparov product [Th. 4.10. cf. B. Blackadar, K-Theory for operator algebras, Cambridge: Cambridge Univ. Press (1998; Zbl 0913.46054)].
The statements in §2–§4 are sufficient to give the definition of the equivariant Poincaré duality. But before providing the definition of the Poincaré duality, defintions and constructions related to the compact quantum group \(SU_q(2)\), which are used to show that the Podleś sphere is equivariantly Poincaré dual to itself, is given in §5. Then, in §6, after giving the definition of equivariant Poincaré duality, the existence of a natural isomorphism
\[ KK^{DG_q}_*(C(G_q/T)\boxtimes_{G_q}, A,B)\cong KK^{DG_q}_*(A, C(G_q/T)\boxtimes_{G_q},B), \]
where \(C(G_q/T)\) is the Podleś sphere, is shown via the study of the Dirac operator of \((G_q/T)\). This shows that the Podleś sphere is \(G_q\)-equivariant Poincaré dual to itself (Th. 6.5).

MSC:

58B32 Geometry of quantum groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
19K35 Kasparov theory (\(KK\)-theory)

References:

[1] Baaj, S.; Skandalis, G., \(C^\ast \)-algèbres de Hopf et théorie de Kasparov équivariante, K-Theory, 2, 683-721 (1989) · Zbl 0683.46048
[2] Baaj, S.; Skandalis, G., Unitaires multiplicatifs et dualité pour les produits croisés des \(C^\ast \)-algèbres, Ann. Sci. École Norm. Sup., 26, 425-488 (1993) · Zbl 0804.46078
[3] Baaj, S.; Skandalis, G.; Vaes, S., Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., 235, 139-167 (2003) · Zbl 1029.46113
[4] Baaj, S.; Vaes, S., Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, 4, 135-173 (2005) · Zbl 1071.46040
[5] Banica, T., Fusion rules for representations of compact quantum groups, Expo. Math., 17, 313-337 (1999) · Zbl 0948.17005
[6] Bédos, E.; Tuset, L., Amenability and co-amenability for locally compact quantum groups, Internat. J. Math., 14, 865-884 (2003) · Zbl 1051.46047
[7] Blackadar, B., \(K\)-Theory for Operator Algebras (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0913.46054
[8] Blanchard, E., Déformations de \(C^\ast \)-algèbres de Hopf, Bull. Soc. Math. France, 124, 141-215 (1996) · Zbl 0851.46040
[9] Bott, R., The index theorem for homogeneous differential operators, (Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) (1965), Princeton Univ. Press), 167-186 · Zbl 0173.26001
[10] Chakraborty, P. S.; Pal, A., Equivariant spectral triples on the quantum \(SU(2)\) group, K-Theory, 28, 107-126 (2003) · Zbl 1028.58005
[11] Connes, A., Noncommutative Geometry (1994), Academic Press · Zbl 1106.58004
[12] Connes, A., Noncommutative geometry and reality, J. Math. Phys., 36, 6194-6231 (1995) · Zbl 0871.58008
[13] Connes, A., Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys., 182, 155-176 (1996) · Zbl 0881.58009
[14] Connes, A., On the spectral characterization of manifolds (2008)
[15] Cuntz, J., A new look at KK-theory, K-Theory, 1, 31-51 (1987) · Zbl 0636.55001
[16] Dąbrowski, L., Geometry of quantum spheres, J. Geom. Phys., 56, 86-107 (2006) · Zbl 1082.58026
[17] Dąbrowski, L.; D’Andrea, F.; Landi, G.; Wagner, E., Dirac operators on all Podleś quantum spheres, J. Noncommut. Geom., 1, 213-239 (2007) · Zbl 1121.58008
[18] Dąbrowski, L.; Landi, G.; Sitarz, A.; van Suijlekom, W.; Várilly, J., The Dirac operator on \(SU_q(2)\), Comm. Math. Phys., 259, 729-759 (2005) · Zbl 1090.58504
[19] Dąbrowski, L.; Sitarz, A., Dirac operator on the standard Podleś quantum sphere, (Noncommutative Geometry and Quantum Groups. Noncommutative Geometry and Quantum Groups, Warsaw, 2001. Noncommutative Geometry and Quantum Groups. Noncommutative Geometry and Quantum Groups, Warsaw, 2001, Banach Center Publ., vol. 61 (2003), Polish Acad. Sci.: Polish Acad. Sci. Warsaw), 49-58 · Zbl 1061.58004
[20] Echterhoff, S.; Kaliszewski, S.; Quigg, J.; Raeburn, I., A categorical approach to imprimitivity theorems for \(C^\ast \)-dynamical systems, Mem. Amer. Math. Soc., 180 (2006) · Zbl 1097.46042
[21] R. Fischer, Volle verschränkte Produkte für Quantengruppen und äquivariante KK-Theorie, PhD thesis, Münster, 2003; R. Fischer, Volle verschränkte Produkte für Quantengruppen und äquivariante KK-Theorie, PhD thesis, Münster, 2003
[22] Kasparov, G. G., Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91, 147-201 (1988) · Zbl 0647.46053
[23] Klimyk, A.; Schmuedgen, K., Quantum Groups and Their Representations, Texts Monogr. Phys. (1997), Springer: Springer Berlin · Zbl 0891.17010
[24] Kustermans, J., Locally compact quantum groups in the universal setting, Internat. J. Math., 12, 289-338 (2001) · Zbl 1111.46311
[25] Kustermans, J.; Vaes, S., Locally compact quantum groups, Ann. Sci. École Norm. Sup., 33, 837-934 (2000) · Zbl 1034.46508
[26] Kustermans, J.; Vaes, S., Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., 92, 68-92 (2003) · Zbl 1034.46067
[27] Majid, S., Foundations of Quantum Group Theory (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0857.17009
[28] McLeod, J., The Künneth formula in equivariant \(K\)-theory, (Algebraic Topology, Proc. Conf.. Algebraic Topology, Proc. Conf., Univ. Waterloo, Waterloo, ON, 1978. Algebraic Topology, Proc. Conf.. Algebraic Topology, Proc. Conf., Univ. Waterloo, Waterloo, ON, 1978, Lecture Notes in Math., vol. 741 (1978)), 316-333 · Zbl 0426.55006
[29] Meyer, R., Equivariant Kasparov theory and generalized homomorphisms, K-Theory, 21, 201-228 (2000) · Zbl 0982.19004
[30] Meyer, R.; Nest, R., The Baum-Connes conjecture via localisation of categories, Topology, 45, 209-259 (2006) · Zbl 1092.19004
[31] Müller, E. F.; Schneider, H.-J., Quantum homogeneous spaces with faithfully flat module structures, Israel J. Math., 111, 157-190 (1999) · Zbl 1001.17015
[32] Nagy, G., On the Haar measure of the quantum \(SU(N)\) group, Comm. Math. Phys., 153, 217-228 (1993) · Zbl 0779.17015
[33] G. Nagy, Deformation quantization and \(K\)-theory, in: Perspectives on Quantization, South Hadley, MA, 1996, in: Contemp. Math., vol. 214, 1998, pp. 111-134; G. Nagy, Deformation quantization and \(K\)-theory, in: Perspectives on Quantization, South Hadley, MA, 1996, in: Contemp. Math., vol. 214, 1998, pp. 111-134 · Zbl 0903.46068
[34] Neeman, A., Triangulated Categories, Ann. of Math. Stud., vol. 148 (2001), Princeton Univ. Press · Zbl 0974.18008
[35] Neshveyev, S.; Tuset, L., Hopf algebra equivariant cyclic cohomology, \(K\)-theory and index formulas, K-Theory, 31, 357-378 (2004) · Zbl 1067.19002
[36] Neshveyev, S.; Tuset, L., The Dirac operator on compact quantum groups (2007)
[37] Podleś, P., Quantum spheres, Lett. Math. Phys., 14, 193-202 (1987) · Zbl 0634.46054
[38] Podleś, P.; Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys., 130, 381-431 (1990) · Zbl 0703.22018
[39] Popescu, R., Coactions of Hopf-\(C^\ast \)-algebras and equivariant \(E\)-theory (2004)
[40] Rosenberg, J.; Schochet, C., The Künneth theorem and the universal coefficient theorem for equivariant \(K\)-theory and KK-theory, Mem. Amer. Math. Soc., 62 (1986) · Zbl 0607.46043
[41] P. Schauenburg, Hopf-Galois and bi-Galois extensions, in: Galois Theory, Hopf Algebras, and Semiabelian Categories, in: Fields Inst. Commun., vol. 43, 2004, pp. 469-515; P. Schauenburg, Hopf-Galois and bi-Galois extensions, in: Galois Theory, Hopf Algebras, and Semiabelian Categories, in: Fields Inst. Commun., vol. 43, 2004, pp. 469-515 · Zbl 1091.16023
[42] Sitarz, A., Equivariant spectral triples, (Noncommutative Geometry and Quantum Groups. Noncommutative Geometry and Quantum Groups, Warsaw, 2001. Noncommutative Geometry and Quantum Groups. Noncommutative Geometry and Quantum Groups, Warsaw, 2001, Banach Center Publ., vol. 61 (2003), Polish Acad. Sci.: Polish Acad. Sci. Warsaw), 231-263 · Zbl 1061.58007
[43] Sitarz, A., Twisted Dirac operators over quantum spheres, J. Math. Phys., 49, 033509 (2008) · Zbl 1153.81434
[44] Vaes, S., A new approach to induction and imprimitivity results, J. Funct. Anal., 229, 317-374 (2005) · Zbl 1087.22005
[45] Vaes, S.; Vainerman, L., On low-dimensional locally compact quantum groups, (Locally Compact Quantum Groups and Groupoids. Locally Compact Quantum Groups and Groupoids, Strasbourg, 2002. Locally Compact Quantum Groups and Groupoids. Locally Compact Quantum Groups and Groupoids, Strasbourg, 2002, IRMA Lect. Math. Theor. Phys., vol. 2 (2003), de Gruyter: de Gruyter Berlin), 127-187 · Zbl 1178.17017
[46] R. Vergnioux, KK-théorie équivariante et opérateur de Julg-Valette pour les groupes quantiques, PhD thesis, Paris, 2002; R. Vergnioux, KK-théorie équivariante et opérateur de Julg-Valette pour les groupes quantiques, PhD thesis, Paris, 2002
[47] Wagner, E., On the noncommutative spin geometry of the standard Podles sphere and index computations · Zbl 1182.58005
[48] Woronowicz, S. L., Twisted \(SU(2)\) group. An example of a noncommutative differential calculus, Publ. RIMS Kyoto, 23, 117-181 (1987) · Zbl 0676.46050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.