×

Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing. (English) Zbl 1183.37122

Summary: This work focuses on one-dimensional (1D) quasi-periodically forced nonlinear wave equations. This means studying
\[ u_{tt}-u_{xx}+\mu u+\varepsilon\phi(t)h(u)=0,\quad \mu>0, \]
with Dirichlet boundary conditions, where \(\varepsilon\) is a small positive parameter, \(\phi(t)\) is a real analytic quasi-periodic function in \(t\) with frequency vector \(\omega=(\omega_1,\omega_2,\dots,\omega_m)\) and the nonlinearity \(h\) is a real analytic odd function of the form
\[ h(u)=\eta_1u+\eta_{2\overline r+1}u^{2\overline r+1}+\sum_{k\geq\overline r+1}\eta_{2k+1}u^{2k+1},\quad \eta_1,\eta_{2\overline r+1}\neq 0,\;\overline r\in\mathbb N. \]
It is shown that, under a suitable hypothesis on \(\phi(t)\) and \(h\), there are many quasi-periodic solutions for the above equation via KAM theory.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35L70 Second-order nonlinear hyperbolic equations
35L05 Wave equation
Full Text: DOI

References:

[1] Craig, W.; Wayne, C. E., Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure. Appl. Math., 46, 1409-1498 (1993) · Zbl 0794.35104
[2] Bourgain, J., Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148, 363-439 (1998) · Zbl 0928.35161
[3] Bourgain, J., Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5, 629-639 (1995) · Zbl 0834.35083
[4] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear quations and applications to nonlinear PDE, in: International Mathematics Research Notices, 1994, pp. 475-497; J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear quations and applications to nonlinear PDE, in: International Mathematics Research Notices, 1994, pp. 475-497 · Zbl 0817.35102
[5] Bourgain, J., Green’s function estimates for lattice Schrödinger operators and applications, (Annals of Mathematics Studies, vol. 158 (2005), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 1137.35001
[6] Wayne, C. E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127, 479-528 (1990) · Zbl 0708.35087
[7] Kuksin, S. B., Nearly integrable infinite-dimensional Hamiltonian systems, (Lecture Notes in Math., vol. 1556 (1993), Springer: Springer New York) · Zbl 0667.58060
[8] Pöschel, J., A KAM-theorem for some nonlinear PDEs, Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser. (15), 23, 119-148 (1996) · Zbl 0870.34060
[9] Bambusi, D.; Paleari, S., Familes of periodic orbits for resonant PDEs, J. Nonlinear Sci., 11, 69-87 (2001) · Zbl 0994.37040
[10] Brézis, H., Periodic solutions of nonlinear vibratingstrings and duality principles, Bull. AMS., 8, 409-426 (1983) · Zbl 0515.35060
[11] Lidskiľ, G. V.; Shul’man, E. I., Periodic solutions of the equation \(u_{t t} - u_{x x} + u^3 = 0\)., Funct. Anal. Appl., 22, 332-333 (1988) · Zbl 0837.35012
[12] S.B. Kuksin, Elements of a qualitative theory of Hamiltonian PDEs, in: Proceedings of ICM 1998, vol. II, Doc. Math. (extra) (1998) 819-829; S.B. Kuksin, Elements of a qualitative theory of Hamiltonian PDEs, in: Proceedings of ICM 1998, vol. II, Doc. Math. (extra) (1998) 819-829 · Zbl 0967.35123
[13] Bobenko, A. I.; Kuksin, S. B., The nonlinear Klein-Gordon equation on an interval as perturbed sin-Gordon equation, Comm. Math. Helv., 70, 63-112 (1995) · Zbl 0842.35099
[14] Pöschel, J., Quasi-periodic solutions for nonlinear wave equations, Comm. Math. Helv., 71, 269-296 (1996) · Zbl 0866.35013
[15] Kuksin, S. B.; Pöschel, J., Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143, 149-179 (1996) · Zbl 0847.35130
[16] Yuan, X., Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations, 230, 213-274 (2006) · Zbl 1146.35307
[17] Rabinowitz, P. H., Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math., 20, 145-205 (1967) · Zbl 0152.10003
[18] Rabinowitz, P. H., Time periodic solutions of nonlinear wave equations, Manuscripta Math., 5, 165-194 (1971) · Zbl 0219.35062
[19] Berti, M.; Procesi, M., Quasi-periodic solutions of completely resonant forced wave equations, Comm. Partial Differential Equation, 31, 959-985 (2006) · Zbl 1100.35011
[20] Baldi, P.; Berti, M., Forced vibrations of a nonhomogeneous string, SIAM J. Math. Anal., 40, 382-412 (2008) · Zbl 1217.35012
[21] Kuksin, S. B., Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 21, 192-205 (1987) · Zbl 0716.34083
[22] Bambusi, D.; Graffi, S., Time Quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219, 465-480 (2001) · Zbl 1003.37042
[23] Eliasson, H. L.; Kuksin, S. B., On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys. (2008) · Zbl 1140.37021
[24] Bogoljubov, N. N.; Mitropolskii, Yu. A.; Samoilenko, A. M., Methods of Accelerated Convergence in Nonlinear Mechanics (1976), Springer: Springer New York, (Russian original: Naukova Dumka, Kiev, 1969) · Zbl 0331.34049
[25] Z. Liang, J. You, Quasi-periodic solutions for 1D nonlinear wave equation with a general nonlinearity. http://www.ma.utexas.edu/mp_arc/c/05/05-75.pdf; Z. Liang, J. You, Quasi-periodic solutions for 1D nonlinear wave equation with a general nonlinearity. http://www.ma.utexas.edu/mp_arc/c/05/05-75.pdf
[26] Pöschel, J.; Trubowitz, E., Inverse Spectral Theory (1987), Academic Press: Academic Press Boston · Zbl 0623.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.