×

Seminormalizing a default theory. (English) Zbl 1185.03052

Summary: Most of the work in default logic is about default theories that are completely specified. In this category are the proposals of appropriate semantics for default logic, the characterizations of the complexity of reasoning with a default theory, the algorithms for finding consequences of default theories, etc. Relatively little attention has been paid to the process of building a default theory, and most of the work on this topic is about translating knowledge bases from other formalisms (such as circumscription, autoepistemic logic, and action description languages) into default logic. This paper is about expressing knowledge in default logic. In particular, we assume that defaults are initially formulated as normal, and are then corrected using specific inference examples.

MSC:

03B60 Other nonclassical logic
68T27 Logic in artificial intelligence
68T30 Knowledge representation
Full Text: DOI

References:

[1] DOI: 10.2307/2274239 · Zbl 0578.03011 · doi:10.2307/2274239
[2] AMATI G., Journal of Logic and Computation 6 pp 205– (1996) · Zbl 0859.03027 · doi:10.1093/logcom/6.2.205
[3] ANTONIOU G., Artificial Intelligence Review 8 (1) pp 3– (1994) · Zbl 0820.68110 · doi:10.1007/BF00851348
[4] ANTONIOU G., ACM Computing Surveys 31 (4) pp 337– (1999) · doi:10.1145/344588.344602
[5] BAUMGARTNER R., Theoretical Computer Science 289 (1) pp 591– (2002) · Zbl 1061.68068 · doi:10.1016/S0304-3975(01)00383-8
[6] DOI: 10.1016/0004-3702(91)90099-6 · Zbl 0753.03011 · doi:10.1016/0004-3702(91)90099-6
[7] CHOLEWINSKI P., Proceedings of the Twelfth International Conference on Logic Programming (ICLP’95) pp 267–
[8] CHOLEWINSKI P., Artificial Intelligence 112 pp 105– (1999) · Zbl 0996.68195 · doi:10.1016/S0004-3702(99)00053-3
[9] DOI: 10.1016/0004-3702(94)90106-6 · Zbl 0817.03011 · doi:10.1016/0004-3702(94)90106-6
[10] DELGRANDE J., Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2003) pp 452–
[11] EITER T., Theoretical Computer Science 114 pp 231– (1993) · Zbl 0786.68085 · doi:10.1016/0304-3975(93)90073-3
[12] DOI: 10.1016/S0004-3702(96)00040-9 · Zbl 1017.03515 · doi:10.1016/S0004-3702(96)00040-9
[13] ETHERINGTON D. V., Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI’87) pp 489–
[14] FROIDEVAUX C., EuropeanWorkshop on Logics in AI (JELIA’92) pp 154–
[15] FROIDEVAUX C., Computational Intelligence 10 pp 331– (1994) · doi:10.1111/j.1467-8640.1994.tb00168.x
[16] GÄRDENFORS P., Knowledge in Flux: Modeling the Dynamics of Epistemic States (1988) · Zbl 1229.03008
[17] GIORDANO L., Artificial Intelligence 66 pp 161– (1994) · Zbl 0803.68126 · doi:10.1016/0004-3702(94)90006-X
[18] GOTTLOB G., Journal of the ACM 42 pp 711– (1995) · Zbl 0884.03025 · doi:10.1145/210332.210334
[19] GROSOF B., Proceedings of the Non- Monotonic Reasoning Workshop (NMR’84) pp 115–
[20] DOI: 10.1016/0004-3702(87)90064-6 · Zbl 0667.03014 · doi:10.1016/0004-3702(87)90064-6
[21] JANHUNEN T., Proceedings of the Sixth European Workshop on Logics in Artificial Intelligence (JELIA’98) pp 216–
[22] DOI: 10.1016/0004-3702(91)90069-V · Zbl 0792.68182 · doi:10.1016/0004-3702(91)90069-V
[23] DOI: 10.1016/0004-3702(88)90021-5 · Zbl 0647.68088 · doi:10.1016/0004-3702(88)90021-5
[24] LEVY F., European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQAU’91) pp 219–
[25] LIBERATORE P., Artificial Intelligence 93 (1) pp 261– (1997) · Zbl 1017.03507 · doi:10.1016/S0004-3702(97)00016-7
[26] LIBERATORE P., Proceedings of the Thirteenth European Conference on Artificial Intelligence (ECAI’98) pp 18–
[27] LIBERATORE P., Proceedings of the Fifteenth European Conference on Artificial Intelligence (ECAI 2002) pp 526–
[28] LIBERATORE P., Where Fail-Safe Default Logics Fail (2004) · Zbl 1367.68284
[29] LIBERATORE P., Representability in Default Logic (2005) · Zbl 1102.68128
[30] LINKE T., Journal of Applied Non-Classical Logics 7 (1997)
[31] LINKE T., Artificial Intelligence 124 (1) pp 31– (2000) · Zbl 0952.68135 · doi:10.1016/S0004-3702(00)00060-6
[32] DOI: 10.1111/j.1467-8640.1988.tb00086.x · doi:10.1111/j.1467-8640.1988.tb00086.x
[33] DOI: 10.1023/A:1014445017537 · Zbl 1002.68175 · doi:10.1023/A:1014445017537
[34] MIKITIUK A., Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI’ 95) pp 1509–
[35] NUTE D., Handbook of logic in artificial intelligence and logic programming, vol. 3: Nonmonotonic reasoning and uncertain reasoning pp 353– (1994) · Zbl 0804.03017
[36] DOI: 10.1016/0004-3702(80)90014-4 · Zbl 0435.68069 · doi:10.1016/0004-3702(80)90014-4
[37] REITER R., Proceedings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI’81) pp 94–
[38] ROSATI R., Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI’99) pp 76–
[39] SCHWIND C. B., Proceedings of the Tenth International Conference on Automated Deduction (CADE’90), vol. 449 of Lecture Notes in Computer Science pp 528–
[40] SCHAUB T., Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI’92) pp 304–
[41] TURNER H., Journal of Logic Programming 31 (1) pp 245– (1997) · Zbl 0880.68010 · doi:10.1016/S0743-1066(96)00125-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.