×

The effect of sudden source buoyancy flux increases on turbulent plumes. (English) Zbl 1183.76788

Summary: Building upon the recent experimentally verified modelling of turbulent plumes which are subject to decreases in their source strength (Scase et al., J. Fluid Mech., vol. 563, 2006b, p. 443), we consider the complementary case where the plume’s source strength is increased. We consider the effect of increasing the source strength of an established plume and we also compare time-dependent plume model predictions for the behaviour of a starting plume to those of Turner (J. Fluid Mech., vol. 13, 1962, p. 356). Unlike the decreasing source strength problems considered previously, the relevant solution to the time-dependent plume equations is not a simple similarity solution. However, scaling laws are demonstrated which are shown to be applicable across a large number of orders of magnitude of source strength increase. It is shown that an established plume that is subjected to an increase in its source strength supports a self-similar ‘pulse’ structure propagating upwards. For a point source plume, in pure plume balance, subjected to an increase in the source buoyancy flux \(F_0\), the rise height of this pulse in terms of time \(t\) scales as \(t^{3/4}\) while the vertical extent of the pulse scales as \(t^{1/4}\). The volume of the pulse is shown to scale as \(t^{9/4}\). For plumes in pure plume balance that emanate from a distributed source it is shown that the same scaling laws apply far from the source, demonstrating an analogous convergence to pure plume balance as that which is well known in steady plumes. These scaling law predictions are compared to implicit large eddy simulations of the buoyancy increase problem and are shown to be in good agreement. We also compare the predictions of the time-dependent model to a starting plume in the limit where the source buoyancy flux is discontinuously increased from zero. The conventional model for a starting plume is well approximated by a rising turbulent, entraining, buoyant vortex ring which is fed from below by a ‘steady’ plume. However, the time-dependent plume equations have been defined for top-hat profiles assuming only horizontal entrainment. Therefore, this system cannot model either the internal dynamics of the starting plume’s head or the extra entrainment of ambient fluid into the head due to the turbulent boundary of the vortex ring-like cap. We show that the lack of entrainment of ambient fluid through the head of the starting plume means that the time-dependent plume equations overestimate the rise height of a starting plume with time. However, by modifying the entrainment coefficient appropriately, we see that realistic predictions consistent with experiment can be attained.

MSC:

76F99 Turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Zeldovich, Zhur. Eksper. Teor. Fiz. 7 pp 1463– (1937)
[2] DOI: 10.1080/14685240500331595 · Zbl 1273.76213 · doi:10.1080/14685240500331595
[3] Turner, Buoyancy effects in fluids. (1973) · Zbl 0262.76067 · doi:10.1017/CBO9780511608827
[4] DOI: 10.1017/S0022112062000762 · Zbl 0106.40404 · doi:10.1017/S0022112062000762
[5] DOI: 10.1098/rspa.1957.0022 · Zbl 0074.45501 · doi:10.1098/rspa.1957.0022
[6] DOI: 10.1002/qj.49708034308 · doi:10.1002/qj.49708034308
[7] DOI: 10.1017/S0022112007004740 · Zbl 1147.76578 · doi:10.1017/S0022112007004740
[8] Levine, J. Meteor. 16 pp 653– (1959) · doi:10.1175/1520-0469(1959)016<0653:SVTOBL>2.0.CO;2
[9] DOI: 10.1017/S0022112004003209 · Zbl 1065.76004 · doi:10.1017/S0022112004003209
[10] DOI: 10.1017/S0022112003005482 · Zbl 1063.76571 · doi:10.1017/S0022112003005482
[11] DOI: 10.1017/S0022112001003871 · Zbl 1022.76023 · doi:10.1017/S0022112001003871
[12] DOI: 10.1098/rsta.1894.0006 · JFM 25.1471.01 · doi:10.1098/rsta.1894.0006
[13] DOI: 10.1137/0906009 · Zbl 0562.76072 · doi:10.1137/0906009
[14] Grinstein, Implicit Large Eddy Simulation. (2007) · Zbl 1135.76001 · doi:10.1017/CBO9780511618604
[15] DOI: 10.1080/03091929508228996 · doi:10.1080/03091929508228996
[16] DOI: 10.2514/2.772 · doi:10.2514/2.772
[17] DOI: 10.1080/14685240701250289 · Zbl 1273.76191 · doi:10.1080/14685240701250289
[18] DOI: 10.1016/0169-5983(92)90023-P · doi:10.1016/0169-5983(92)90023-P
[19] DOI: 10.1017/S0022112079001877 · doi:10.1017/S0022112079001877
[20] Boris, Lecture notes in Physics pp 344– (1990)
[21] DOI: 10.1016/0021-9991(90)90233-Q · Zbl 0694.65041 · doi:10.1016/0021-9991(90)90233-Q
[22] Bell, 10th A.I.A.A. Computational Fluid Dynamics Conference (1991)
[23] Aspden, Comm. Appl. Math. Comput. Sci. 3 pp 103– (2008) · Zbl 1162.76024 · doi:10.2140/camcos.2008.3.103
[24] DOI: 10.1137/S1064827599357024 · Zbl 0995.76059 · doi:10.1137/S1064827599357024
[25] DOI: 10.1006/jcph.1998.5890 · Zbl 0933.76055 · doi:10.1006/jcph.1998.5890
[26] Scase, Proceedings of 6th International Symposium on Stratified Flows pp 112– (2006)
[27] DOI: 10.1017/S0022112006001212 · Zbl 1177.76037 · doi:10.1017/S0022112006001212
[28] DOI: 10.1017/S0022112008000487 · Zbl 1151.76442 · doi:10.1017/S0022112008000487
[29] DOI: 10.1017/S0022112006000784 · Zbl 1177.76036 · doi:10.1017/S0022112006000784
[30] DOI: 10.1017/S0022112061000834 · Zbl 0098.41104 · doi:10.1017/S0022112061000834
[31] DOI: 10.1103/PhysRevLett.68.3156 · doi:10.1103/PhysRevLett.68.3156
[32] Oran, Comp. Phys. 7 pp 523– (1993) · doi:10.1063/1.4823213
[33] Morton, Proc. R. Soc. Lond. A 234 pp 1– (1956)
[34] DOI: 10.1017/S0022112075003266 · doi:10.1017/S0022112075003266
[35] DOI: 10.1063/1.858059 · doi:10.1063/1.858059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.