×

Wave-power extraction by a compact array of buoys. (English) Zbl 1183.76632

Summary: The majority of existing single-unit devices for extracting power from sea waves relies on resonance at the peak frequency of the incident wave spectrum. Such designs usually call for structural dimensions not too small compared to a typical wavelength and yield high efficiency only within a limited frequency band. A recent innovation in Norway departs from this norm by gathering many small buoys in a compact array. Each buoy is too small to be resonated in typical sea conditions. In this article a theoretical study is performed to evaluate this new design. Within the framework of linearization, we consider a periodic array of small buoys with similarly small separation compared to the typical wavelength. The method of homogenization (multiple scales) is used to derive the equations governing the macroscale behaviour of the entire array. These equations are then applied to energy extraction by an infinite strip of buoys, and by a circular array. In the latter case, advantages are found when compared to a single buoy of equal volume.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] DOI: 10.1016/S0029-8018(01)00076-2 · doi:10.1016/S0029-8018(01)00076-2
[2] Abramowitz, Handbook of Mathematical Functions (1964)
[3] DOI: 10.1016/0141-1187(79)90004-X · doi:10.1016/0141-1187(79)90004-X
[4] Mei, Theory and Application of Ocean Surface Waves (2005)
[5] DOI: 10.1023/A:1004389503576 · Zbl 0916.76084 · doi:10.1023/A:1004389503576
[6] DOI: 10.1016/S0141-1187(82)80026-6 · doi:10.1016/S0141-1187(82)80026-6
[7] DOI: 10.1017/S0022112097005296 · Zbl 0888.76010 · doi:10.1017/S0022112097005296
[8] Falnes, Ocean Waves and Oscillating Systems (2002) · doi:10.1017/CBO9780511754630
[9] DOI: 10.1007/BF00042787 · Zbl 0898.76010 · doi:10.1007/BF00042787
[10] DOI: 10.1016/0141-1187(84)90024-5 · doi:10.1016/0141-1187(84)90024-5
[11] DOI: 10.1098/rsta.1992.0011 · Zbl 0747.76024 · doi:10.1098/rsta.1992.0011
[12] DOI: 10.1016/0141-1187(80)90032-2 · doi:10.1016/0141-1187(80)90032-2
[13] DOI: 10.1017/S0022112090002750 · Zbl 0699.76021 · doi:10.1017/S0022112090002750
[14] DOI: 10.1017/S0022112091001908 · Zbl 0717.76111 · doi:10.1017/S0022112091001908
[15] DOI: 10.1017/S0022112007006131 · Zbl 1116.76014 · doi:10.1017/S0022112007006131
[16] DOI: 10.1093/imamat/hxl025 · Zbl 1121.76010 · doi:10.1093/imamat/hxl025
[17] Budal, Power from Sea Waves (1980)
[18] DOI: 10.1017/S0022112071000454 · Zbl 0233.76039 · doi:10.1017/S0022112071000454
[19] DOI: 10.1016/0141-1187(79)90026-9 · doi:10.1016/0141-1187(79)90026-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.