×

Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames. (English) Zbl 1180.42004

A sequence \(\{\Phi_{j-1}\}_{j\in\mathbb{N}}\), where \(\Phi_{j-1}\in L_2(\mathbb{R})\), is called sequence of nonstationary refinable functions, if \(\widehat\Phi_{j-1}(\xi)=\widehat a_j(\xi/2)\widehat\Phi_j(\xi/2)\) a.e. in \(\mathbb{R}\), \(j\in\mathbb{N}\), where \(\widehat a_j\) are \(2\pi\)-periodic measurable functions and \(~\widehat{}~\) means the Fourier transform. For \(\widehat b_j\) \(2\pi\)-periodic and measurable, the wavelet function \(\psi^l_{j-1}\), \(j\in\mathbb{N}\), \(l= 1,\dots, J_j\), are defined by formula \(\widehat\psi^l_{j-1}(\xi)= b^l_j(\xi/2)\phi_j(\xi/2)\).
The main tool in the paper is obtained applying the notion of a nonstationary tight wavelet frame for \(L_2(\mathbb{R})\), \(X= X(\Phi_0,\{\psi_j^l\}_{j\in \mathbb{N}_0,l\in\{1,\dots,J_{j+1}\}})\). Let \(H^s(\mathbb{R})\) be the Sobolev space. Under some conditions on \(s\in\mathbb{R}\), there is defined an expression, equivalent to the norm of \(f\) in \(H^s(\mathbb{R})\) for all \(f\in H^s(\mathbb{R})\). This leads to the result that any compactly supported nonstationary wavelet frame can be property normalized into a pair of dual frames in the corresponding pair of Sobolev spaces.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Borup, L.; Gribonval, R.; Nielsen, M., Tight wavelet frames in Lebesgue and Sobolev spaces, Journal of Function Spaces and Applications, 2, 227-252 (2004) · Zbl 1058.42025 · doi:10.1155/2004/792493
[2] Borup, L.; Gribonval, R.; Nielsen, M., Bi-framelet systems with few vanishing moments characterize Besov spaces, Applied and Computational Harmonic Analysis, 17, 3-28 (2004) · Zbl 1042.42028 · doi:10.1016/j.acha.2004.01.004
[3] Chui, C. K.; He, W.; Stöckler, J., Compactly supported tight and sibling frames with maximum vanishing moments, Applied and Computational Harmonic Analysis, 13, 224-262 (2002) · Zbl 1016.42023 · doi:10.1016/S1063-5203(02)00510-9
[4] Cohen, A.; Dyn, N., Nonstationary subdivision schemes and multiresolution analysis, SIAM Journal on Mathematical Analysis, 27, 1745-1769 (1996) · Zbl 0862.41013 · doi:10.1137/S003614109427429X
[5] Daubechies, I., Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41, 909-996 (1988) · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[6] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics (1992), Philadelphia: SIAM, Philadelphia · Zbl 0776.42018
[7] Daubechies, I.; Han, B.; Ron, A.; Shen, Z., Framelets: MRA-based constructions of wavelet frames, Applied and Computational Harmonic Analysis, 14, 1-46 (2003) · Zbl 1035.42031 · doi:10.1016/S1063-5203(02)00511-0
[8] Derfel, G.; Dyn, N.; Levin, D., Generalized functional equations and subdivision processes, Journal of Approximation Theory, 80, 272-297 (1995) · Zbl 0823.45001 · doi:10.1006/jath.1995.1019
[9] Dong, B.; Shen, Z., Construction of biorthogonal wavelets from pseudo-splines, Journal of Approximation Theory, 138, 211-23 (2006) · Zbl 1083.42028 · doi:10.1016/j.jat.2005.11.008
[10] Dong, B.; Shen, Z., Linear independence of pseudo-splines, Proceedings of the American Mathematical Society, 134, 2685-2694 (2006) · Zbl 1100.42025 · doi:10.1090/S0002-9939-06-08316-X
[11] Dong, B.; Shen, Z., Pseudo-splines, wavelets and framelets, Applied and Computational Harmonic Analysis, 22, 78-104 (2007) · Zbl 1282.42035 · doi:10.1016/j.acha.2006.04.008
[12] Han, B., Vector cascade algorithms and refinable function vectors in Sobolev spaces, Journal of Approximation Theory, 124, 44-88 (2003) · Zbl 1028.42019 · doi:10.1016/S0021-9045(03)00120-5
[13] Han, B., Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, Journal of Computational and Applied Mathematics, 155, 43-67 (2003) · Zbl 1021.42020 · doi:10.1016/S0377-0427(02)00891-9
[14] Han, B., Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix, Advances in Computational Mathematics, 24, 375-403 (2006) · Zbl 1096.65137 · doi:10.1007/s10444-004-7615-2
[15] Han, B.; Shen, Z., Compactly supported symmetric C^∞ wavelets with spectral approximation order, SIAM Journal on Mathematical Analysis, 40, 905-938 (2008) · Zbl 1161.42312 · doi:10.1137/060675009
[16] B. Han and Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces, preprint, online Constructive Approximation, DOI 10.1007/200365-008-9027-x.
[17] Y. Hur and A. Ron, CAPlets: wavelet representations without wavelets, preprint, 2005.
[18] Ron, A.; Shen, Z., Affine systems in L_2(ℝ^d): the analysis of the analysis operator, Journal of Functional Analysis, 148, 408-447 (1997) · Zbl 0891.42018 · doi:10.1006/jfan.1996.3079
[19] Rvachev, V. L.; Rvachev, V. A., On a function with compact support, Dopovīdī Akademīi Nauk Ukraïns’koï RSR, Matematika. Prirodoznavstvo. Tekhnichni Nauki, 8, 705-707 (1971)
[20] Selesnick, I. W., Smooth wavelet tight frames with zero moments, Applied and Computational Harmonic Analysis, 10, 163-181 (2000) · Zbl 0972.42025 · doi:10.1006/acha.2000.0332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.