×

Conditional entropy theory in infinite measure and a question of Krengel. (English) Zbl 1177.28038

Let \(T\) be an infinite measure preserving transformation. In the paper it is introduced in a natural way a conditional entropy \(h(T,{\mathfrak F})\) of \(T\) relative to a \(\sigma\)-finite factor \({\mathfrak F}\). To this end it is applied the orbital approach to conditional entropy. It is shown that \(h(T|{\mathfrak F})\) is a factor orbit invariant as in the finite measure preserving case. This means that the infinite relative entropy, as in finite measure case, depends only on the \((T\uparrow {\mathfrak F})\)-orbit equivalence relation \(\mathcal R\) and the extending (Rokhlin) cocycle of \(\mathcal R\). It appears that the infinite conditional entropy theory is similar (but not identical) to the classical probability case. There are infinite analogues of relative Kolmogorov-Sinai entropy, Rokhlin and Krieger theorems on generating partitions, Pinsker theorem on disjointness, Furstenberg decomposition disjointness theorem, etc. In case of \(\mathbb Z\)-action, the concept of relative entropy matches well the entropy \(h_Kr \) introduced by Krengel. Ansering his question and a question of Silva and Thieullen, it is shown that for any non-distal transformation \(S\) there exists an infinite measure preserving transformation \(T\) with \(h_Kr (T\times S)=\infty\) but \(h_kr (T)=0\).

MSC:

28D20 Entropy and other invariants
28D05 Measure-preserving transformations
37A05 Dynamical aspects of measure-preserving transformations
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
Full Text: DOI

References:

[1] Begun, B.; Del Junco, A., Amenable groups, stationary measures and partitions with independent iterates, Israel Journal of Mathematics, 158, 41-64 (2007) · Zbl 1145.37300 · doi:10.1007/s11856-007-0003-0
[2] B. Begun and A. del Junco, Partitions with independent iterates in random dynamical systems, Ergodic Theory and Dynamical Systems, to appear. · Zbl 1196.37013
[3] Connes, A.; Feldman, J.; Weiss, B., An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems, 1, 431-450 (1981) · Zbl 0491.28018 · doi:10.1017/S014338570000136X
[4] Danilenko, A. I., Entropy theory from orbital point of view, Monatshefte für Mathematik, 134, 121-141 (2001) · Zbl 0996.37007 · doi:10.1007/s006050170003
[5] Danilenko, A. I., Funny rank one weak mixing for nonsingular abelian actions, Israel Journal of Mathematics, 121, 29-54 (2001) · Zbl 1024.28014 · doi:10.1007/BF02802494
[6] Danilenko, A. I., (C, F)-actions in ergodic theory info, Progress in Mathematics, 265, 325-351 (2007) · Zbl 1229.37006 · doi:10.1007/978-3-7643-8608-5_6
[7] Danilenko, A. I.; Park, K. K., Generators and Bernoullian factors for amenable actions and cocycles on their orbits, Ergodic Theory and Dynamical Systems, 22, 1715-1745 (2002) · Zbl 1027.37003 · doi:10.1017/S014338570200072X
[8] Dooley, A. N., The critical dimension: an approach to non-singular entropy, Algebraic and Topological Dynamics, Contemporary Mathematics, 65-76 (2005), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1097.37003
[9] Dooley, A. N.; Golodets, V. Ya., The spectrum of completely positive entropy actions of countable amenable groups, Journal of Functional Analysis, 196, 1-18 (2002) · Zbl 1015.37005 · doi:10.1006/jfan.2002.3966
[10] Dooley, A. N.; Golodets, V. Ya.; Rudolph, D. J.; Sinelshchikov, S. D., Non-Bernoulli systems with completely positive entropy, Ergodic Theory and Dynamical Systems, 28, 87-124 (2008) · Zbl 1171.37302 · doi:10.1017/S014338570700034X
[11] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory (1981), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0459.28023
[12] Glasner, E.; Thouvenot, J.-P.; Weiss, B., Entropy theory without a past, Ergodic Theory and Dynamical Systems, 20, 1355-1370 (2000) · Zbl 0965.37009 · doi:10.1017/S0143385700000730
[13] Glasner, E.; Weiss, B., Quasi-factors of zero-entropy systems, Journal of the American Mathematical Society, 8, 665-685 (1995) · Zbl 0846.28009
[14] Del Junco, A., A simple map with no prime factors, Israel Journal of Mathematics, 104, 301-320 (1998) · Zbl 0915.28011 · doi:10.1007/BF02897068
[15] Del Junco, A.; Lemanczyk, M.; Mentzen, M., Semisimplicity, joinings, and group extensions, Studia Mathematica, 112, 141-164 (1995) · Zbl 0814.28007
[16] Hulse, P., Sequence entropy relative to an invariant σ-algebra, Journal of the London Mathematical Society, 33, 59-72 (1986) · Zbl 0605.28014 · doi:10.1112/jlms/s2-33.1.59
[17] Klimko, E. M., On the entropy of a product endomorphism in infinite measure spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 12, 290-292 (1969) · Zbl 0184.40103 · doi:10.1007/BF00538750
[18] Krengel, U., Entropy of conservative transformations, Z. Wahrscheinlichkeitheorie verw. Geb., 7, 161-181 (1967) · Zbl 0183.19303 · doi:10.1007/BF00532635
[19] Krengel, U., Transformations without finite invariant measure have strong generators, in Contribution to Ergodic Theory and Probability, 133-157 (1970), Berlin: Springer, Berlin · Zbl 0201.38303
[20] Mortiss, G., Average co-ordinate entropy, Journal of the Australian Mathematical Society, 73, 171-186 (2002) · Zbl 1031.37011 · doi:10.1017/S144678870000879X
[21] Mortiss, G., An invariant for non-singular isomorphism, Ergodica Theory and Dynamical Systems, 23, 885-893 (2003) · Zbl 1067.37008 · doi:10.1017/S0143385702001414
[22] Ornstein, D. S.; Weiss, B., Entropy and isomorphism theorems for actions of amenable groups, Journal d’Analyse Mathématique, 48, 1-141 (1987) · Zbl 0637.28015 · doi:10.1007/BF02790325
[23] Parry, W., An ergodic theorem of information theory without invariant measure, Proceedings of the London Mathematical Society, 13, 605-612 (1963) · Zbl 0199.21302 · doi:10.1112/plms/s3-13.1.605
[24] Parry, W., Ergodic end spectral analysis of certain infinite measure preserving transformations, Proceedings of the American Mathematical Society, 16, 960-966 (1965) · Zbl 0154.30601 · doi:10.1090/S0002-9939-1965-0181737-8
[25] Parry, W., Entropy and Generators in Ergodic Theory (1969), New York-Amsterdam: W. A. Benjamin, Inc., New York-Amsterdam · Zbl 0175.34001
[26] Rudolph, D. J.; Weiss, B., Entropy and mixing for amenable group actions, Annals of Mathematics, 151, 1119-1150 (2000) · Zbl 0957.37003 · doi:10.2307/121130
[27] Rokhlin, V. A., Lectures on the entropy theory of transformations with invariant measure, Russian Mathematics Surveys, 22, 1-52 (1967) · Zbl 0174.45501 · doi:10.1070/RM1967v022n05ABEH001224
[28] E. Roy, Mesures de Poisson, infinie divisibilité et propriétés ergodiquesinfo, Thèse de doctorat de l’universitè Paris 6, 2005.
[29] Silva, C. E.; Thieullen, P., A skew product entropy for nonsingular transformations, Journal of the London Mathematical Society, 52, 497-516 (1995) · Zbl 0867.28012 · doi:10.1112/jlms/52.3.497
[30] Vershik, A. M., Dynamic theory of growth in groups: entropy, boundaries, examples (in Russian), Uspekhi Matematicheskikh Nauk, 55, 59-128 (2000) · Zbl 0991.37005 · doi:10.4213/rm314
[31] Zimmer, R., Ergodic actions with generalized discrete spectrum, Illinois Journal of Mathematics, 20, 555-588 (1976) · Zbl 0349.28011 · doi:10.1215/ijm/1256049648
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.