×

On groups of central type, non-degenerate and bijective cohomology classes. (English) Zbl 1210.20046

Summary: A finite group \(G\) is of central type (in the non-classical sense) if it admits a non-degenerate cohomology class \([c]\in H^2(G,\mathbb{C}^*)\) (\(G\) acts trivially on \(\mathbb{C}^*\)). Groups of central type play a fundamental role in the classification of semisimple triangular complex Hopf algebras and can be determined by their representation-theoretical properties.
Suppose that a finite group \(Q\) acts on an Abelian group \(A\) so that there exists a bijective 1-cocycle \(\pi\in Z^1(Q,\check A)\), where \(\check A=\operatorname{Hom}(A,\mathbb{C}^*)\) is endowed with the diagonal \(Q\)-action. Under this assumption, Etingof and Gelaki gave an explicit formula for a non-degenerate 2-cocycle in \(Z^2(G,\mathbb{C}^*)\), where \(G:=A\rtimes Q\). Hence, the semidirect product \(G\) is of central type.
In this paper, we present a more general correspondence between bijective and non-degenerate cohomology classes. In particular, given a bijective class \(\pi\in H^1(Q,\check A)\) as above, we construct non-degenerate classes \([c_\pi]\in H^2(G,\mathbb{C}^*)\) for certain extensions \(1\to A\to G\to Q\to 1\) which are not necessarily split. We thus strictly extend the above family of central type groups.

MSC:

20J06 Cohomology of groups
20E22 Extensions, wreath products, and other compositions of groups

References:

[1] Aljadeff, E.; Haile, D.; Natapov, M., Projective bases of division algebras and groups of central type, Israel Journal of Mathematics, 146, 317-335 (2005) · Zbl 1074.16015 · doi:10.1007/BF02773539
[2] Aljadeff, E.; Sonn, J., Projective Schur algebras have abelian splitting fields, Journal of Algebra, 175, 179-187 (1995) · Zbl 0828.16017 · doi:10.1006/jabr.1995.1181
[3] Drinfeld, V. G., Almost cocommutative Hopf algebras, Leningrad Mathematical Journal, 1, 321-342 (1990) · Zbl 0718.16035
[4] Demeyer, F. R.; Janusz, G. J., Finite groups with an irreducible representation of large degree, Mathematische Zeitschrift, 108, 145-153 (1969) · Zbl 0169.03502 · doi:10.1007/BF01114468
[5] Etingof, P.; Gelaki, S., Some properties of finite-dimensional semisimple Hopf algebras, Mathematical Research Letters, 5, 191-197 (1998) · Zbl 0907.16016 · doi:10.4310/MRL.1998.v5.n2.a5
[6] Etingof, P.; Gelaki, S., A method of construction of finite-dimensional triangular semisimple Hopf algebras, Mathematical Research Letters, 5, 551-561 (1998) · Zbl 0935.16029 · doi:10.4310/MRL.1998.v5.n4.a12
[7] Etingof, P.; Gelaki, S., The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field, International Mathematics Research Notices, 5, 223-234 (2000) · Zbl 0957.16029 · doi:10.1155/S1073792800000131
[8] Huebschmann, J., Automorphisms of group extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, Journal of Algebra, 72, 296-334 (1981) · Zbl 0443.18018 · doi:10.1016/0021-8693(81)90296-9
[9] Howlett, R. B.; Isaacs, I. M., On groups of central type, Mathematische Zeitschrift, 179, 555-569 (1982) · Zbl 0511.20002 · doi:10.1007/BF01215066
[10] Hochschild, G.; Serre, J.-P., Cohomology of group extensions, Transactions of the American Mathematical Society, 74, 110-134 (1953) · Zbl 0050.02104 · doi:10.1090/S0002-9947-1953-0052438-8
[11] Isaacs, I. M., Character Theory of Finite Groups (1976), New York-London: Academic Press, New York-London · Zbl 0337.20005
[12] Karpilovsky, G., Group Representations (1993), Amsterdam: North-Holland Publishing Co., Amsterdam · Zbl 0676.20004
[13] Movshev, M., Twisting in group algebras of finite groups, Functional Analysis and its Applications, 27, 240-244 (1994) · Zbl 0813.20005 · doi:10.1007/BF01078840
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.