×

Implicit finite element formulations for multi-phase transformation in high carbon steel. (English) Zbl 1388.74101

Summary: An anomalous plastic deformation observed during the phase transformation of steels was implemented into the finite element modeling. The constitutive equations for the transformation plasticity originally proposed by G. W. Greenwood and R. H. Johnson [The deformation of metals under small stresses during phase transformation. Proc. R. Soc. A 283, No. 1394, 403–422 (1965; doi:10.1098/rspa.1965.0029)] and further extended by J. B. Leblond et al. [J. Mech. Phys. Solids 34, 395–409, 411–432 (1986; Zbl 0585.73200); Mathematical modeling of transformation plasticity in steels. I: Case of ideal-plastic phases. II: Coupling with strain hardening phenomena. Int. J. Plasticity 5, 511–572, 573–591 (1989)] were modified to consider the thermomechanical response of generalized multi-phase steel during phase transformations from austenite at high temperature. An implicit numerical solution procedure to calculate the plastic deformation of each constituent phase was newly proposed and implemented into the general purpose implicit finite element program via user material subroutine. The new algorithms include efficient calculation of consistent tangent modulus for the transformation plasticity and application of general anisotropic yield functions without limitation to the isotropic yield function. Besides the thermoelastic-plastic constitutive equations, non-isothermal transformation kinetics was characterized by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation and additivity relationship for the diffusional transformation, while the model proposed by Koistinen and Marburger was used for the diffusionless transformation. Numerical verifications for the continuous cooling experiments under various loading conditions were conducted to demonstrate the applicability of the developed numerical algorithms to the high carbon steel SK5.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A15 Thermodynamics in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type

Citations:

Zbl 0585.73200

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS, 2001. User’s manual for version 6.2.6, Hibbitt, Karlson & Sorensen Inc.
[2] Abrassart, F., 1972. Influence des Transformations Martensitiques sur les Proprietes Mecaniques des Alliages du Systeme Fe – NiCr – C. These d’Etat, Universite de Nancy I, France.
[3] Avrami, M. A.: Kinetics of phase change I – III, J. chem. Phys. 7, 1103 (1939) · Zbl 0021.04502
[4] Barin, I.; Knacke, O.; Kubaschewsky, O.: Thermochemical properties of inorganic substances. Supplement, (1977)
[5] Bergman, G.; Oldenburg, M.: A finite element model for thermomechanical analysis of sheet metal forming, Int. J. Numer. mech. Eng. 59, 1167-1186 (2004) · Zbl 1041.74540 · doi:10.1002/nme.911
[6] Coret, M.; Calloch, S.; Combescure, A.: Experimental study of the phase transformation plasticity of 16NMD5 low carbon steel under multiaxial loading, Int. J. Plasticity 18, 1707-1727 (2002)
[7] Coret, M.; Combescure, A.: A mesomodel for the numerical simulation of the multiphase behavior of materials under anisothermal loading (application to two low-carbon steels), Int. J. Mech. sci. 44, 1947-1963 (2002) · Zbl 1015.74501 · doi:10.1016/S0020-7403(02)00053-X
[8] Cho, Y.; Im, Y.; Kim, G.; Han, H. N.: A finite element model for heat treatment of steel alloy, Solid state phenom. 118, 343-348 (2006)
[9] Chung, K.; Lee, M. -G.; Kim, D.; Kim, C.; Wenner; Barlat, F.: Spring-back evaluation of automotive sheets based on isotropic – kinematic hardening laws and non-quadratic anisotropic yield functions, part I: Theory and formulation, Int. J. Plasticity 21, 861-882 (2005) · Zbl 1161.74331 · doi:10.1016/j.ijplas.2004.05.016
[10] Denis, S., Gauthier, E., Simon, A., Beck, G., 1984. Stress/phase transformation interactions: basic principles; modelization, and their role in the calculation of internal stresses. In: Proceedings of International Symposium on Calculation of Internal Stresses in Heat Treatment of Metallic Materials, Linkoping, Sweden, 23 – 25 May, pp. 157 – 190.
[11] Denis, S.; Farias, D.; Simon, A.: Mathematical-model coupling phase transformations and temperature evolutions in steels, ISIJ int. 32, 316-325 (1992)
[12] Desalos, Y., 1981. Comportemenet Dilatometrique et Mecanique de l’Austenite Metastable d’un Acier A533. IRSID Report #95349401.
[13] Devaux, J., 1998. Comportement Plastique des Aciers en Cours de Transformation de Phases, Etude Numerique des Lois de Melange et de la Plasticite de Transformation. Report LDEW98/235. Systus International.
[14] Fischer, F. D.; Reisner, G.; Werner, E.; Tanaka, K.; Cailletaud, G.; Antretter, T.: A new view on transformation induced plasticity (TRIP), Int. J. Plasticity 16, 723-748 (2000) · Zbl 0947.74560 · doi:10.1016/S0749-6419(99)00078-9
[15] Gigou, D.: Plasticite de transformationl cas de la transformation martensitique, Memoire de D.E.A. Universite Paris XI, France (1985)
[16] Greenwood, G. W.; Johnson, R. H.: The deformation of metals under small stresses during phase transformation, Proc. roy. Soc. A 283, 403 (1965)
[17] Grostabussiat, S. P.; Taleb, L.; Jullien, J. -F.: Experimental results on classical plasticity of steels subjected to structural transformation, Int. J. Plasticity 20, 1371-1386 (2004) · Zbl 1090.74564 · doi:10.1016/j.ijplas.2003.07.003
[18] Garofalo, F.: An empirical relation defining the stress dependence of minimum creep. Rate in metals, Trans. met. Soc. AIME 227, 351-359 (1963)
[19] Han, H. N.; Suh, D. W.: A model for transformation plasticity during bainite transformation of steel under external stress, Acta mater. 51, 4907-4917 (2003)
[20] Han, H. N.; Lee, C. G.; Oh, C. -S.; Lee, T. -H.; Kim, S. -J.: A model for deformation behavior and mechanically induced martensite transformation of metastable austenitic steel, Acta mater. 52, 5203-5214 (2004)
[21] Han, H. N.; Park, S. -H.: Model for cooling and phase transformation behavior of transformation induced plasticity steel on runout table in hot strip mill, Mater. sci. Technol. 17, 721-726 (2001)
[22] Han, H. N.; Lee, J. K.: A constitutive model for transformation superplasticity under external stress during phase transformation of steels, ISIJ int. 42, 200-205 (2002)
[23] Hallberg, H.; Hakansson, P.; Ristinmaa, M.: A constitutive model for the formation of martensite in austenitic steels under large strain plasticity, Int. J. Plasticity 23, 1213-1239 (2007) · Zbl 1294.74051
[24] Inoue, T.; Wang, Z.: Coupling between stress, temperature and metallic structures during processes involving phase transformations, Mater. sci. Technol. 1, 845-850 (1985)
[25] Johnson, W. A.; Mehl, P. A.: Reaction kinetics in processes of nucleation and growth, Trans. am. Inst. miner. Eng. 135, 416 (1939)
[26] Kirkaldy, J. S.; Venugopalan, D.: Prediction of microstructure and hardenability in low alloy steels, (1984)
[27] Kim, J.; Im, S.; Kim, H. G.: Numerical implementation of a thermo-elastic – plastic constitutive equation in consideration of transformation plasticity in welding, Int. J. Plasticity 21, 1383-1408 (2005) · Zbl 1229.74132 · doi:10.1016/j.ijplas.2004.06.007
[28] Koistinen, D. P.; Marburger, R. E.: A general equation prescribing the extent of the austenite – martensite transformation in pure iron – carbon alloys and plain carbon steels, Acta metall. 7, 59 (1959)
[29] Kolmogorov, A. N.: On the statistical theory of the crystallization of metals, Bull. acad. Sci. USSR, math. Ser. 1, 355 (1937)
[30] Leblond, J. B.; Mottet, G.; Devaux, J. C.: A theoretical and numerical approach to the plastic behavior of steels during phase transformations, I. Derivation of general relations, J. mech. Phys. solids 34, 395-409 (1986) · Zbl 0585.73200 · doi:10.1016/0022-5096(86)90009-8
[31] Leblond, J. B.; Mottet, G.; Devaux, J. C.: A theoretical and numerical approach to the plastic behavior of steels during phase transformations, II. Study of classical plasticity for ideal-plastic phases, J. mech. Phys. solids 34, 411-432 (1986) · Zbl 0585.73200 · doi:10.1016/0022-5096(86)90009-8
[32] Leblond, J. B.; Devaux, J.; Devaux, J. C.: Mathematical modeling of transformation plasticity in steels, I: Case of ideal-plastic phases, Int. J. Plasticity 5, 511-572 (1989)
[33] Leblond, J. B.: Mathematical modeling of transformation plasticity in steels, II: Coupling with strain hardening phenomena, Int. J. Plasticity 5, 573-591 (1989)
[34] Magee, C.L., 1966. Transformation kinetics, microplasticity and aging of martensite in Fe – 31Ni. Ph.D. Thesis, Carnegie Institute of Technology, Pittsburgh, PA, USA.
[35] Mahnken, R.; Schneidt, A.; Antretter, T.: Macro modeling and homogenization for transformation induced plasticity of a low-alloy steel, Int. J. Plasticity. 25, 183-204 (2008) · Zbl 1419.74206
[36] Mehl, R. F.; Hagel, W. C.: B.chalmersr.kingprogress in metal physics, Progress in metal physics (1956)
[37] Mercier, S., Molinari, A., in press. Homogenization of elastic – viscoplastic heterogeneous materials: self-consistent and Mori-Tanaka scheme. Int. J. Plasticity, (doi:10.1016/j.ijplas.2008.08.006). · Zbl 1162.74037
[38] Miettinen, J., 1995. Solidification-related thermophysical data for low-alloyed and stainless steels. Helsinki University of Technology: Report TKK-V-B113.
[39] Mitter, W.: Umwandlungsplastizitat und ihre berucksichtigung bei der berechnung von eigenspannungen, (1987)
[40] Xiao, N.; Tong, M.; Lan, Y.; Li, D.; Li, Y.: Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite – ferrite transformation, Acta mater. 54, 1265-1278 (2006)
[41] Saotome, Y.; Iguchi, N.: In-situ microstructural observations and micro-grid analysis of transformation superplasticity in pure iron, Trans. ISIJ 27, 696-704 (1987)
[42] Sheil, E.: Arch. eisenhuttenwes, Arch. eisenhuttenwes 12, 565-567 (1935)
[43] Simo, J. C.; Hughes, T. J. R.: Computational inelasticity, (1997) · Zbl 0934.74003
[44] Taleb, L.; Cavallo, N.; Waeckel, F.: Experimental analysis of transformation plasticity, Int. J. Plasticity 17, 1-20 (2001)
[45] Taleb, L.; Sidoroff, F.: A micromechanical modeling of the greenwood – Johnson mechanism in transformation induced plasticity, Int. J. Plasticity 19, 1821-1842 (2003) · Zbl 1098.74550 · doi:10.1016/S0749-6419(03)00020-2
[46] Taleb, L.; Petit, S.: New investigation on transformation induced plasticity and its interaction with classical plasticity, Int. J. Plasticity 22, 110-130 (2006) · Zbl 1148.74323 · doi:10.1016/j.ijplas.2005.03.012
[47] Touloukian, Y. S.; Buyco, E. H.: Thermophysical properties of matter, Thermophysical properties of matter 5 (1970)
[48] Tomota, Y.; Umemoto, M.; Komatsubaa, N.; Hiramatsu, A.; Nakajima, N.; Moriya, A.; Watanabe, T.; Nanba, S.; Anan, G.; Kunishige, K.; Higo, Y.; Miyahara, M.: Prediction of mechanical properties of multi-phase steels based on stress-strain curves, ISIJ int. 32, 343-349 (1992)
[49] Yao, X.; Zhu, L.; Li, V.: Finite element analysis of residual stress and distortion in an eccentric ring induced by quenching, Proc. 14th IFHTSE cong. 25, 746-751 (2004)
[50] Zwigl, P.; Dunand, D. C.: A non-linear model for internal stress superplasticity, Acta mater. 45, 5285-5294 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.