×

A new look at Jarvis’ distribution formula. (English) Zbl 1190.19003

In two papers [Bull. Lond. Math. Soc. 32, No. 2, 146–154 (2000; Zbl 1024.11042), Manuscr. Math. 103, No. 3, 329–337 (2000; Zbl 1024.11041)], F. Jarvis proved that if \(L\) and \(\Lambda\) are lattices in \({\mathbb C}\), \(\psi: E = {\mathbb C}/L \to {\mathbb C}/\Lambda=F\) an isogeny between the corresponding elliptic curves, \(D\) a divisor satisfying certain conditions and \(\phi_{\Lambda}\), \(\phi_L\) the Siegel functions associated to the lattices \(\Lambda\) and \(L\) then the following distribution formula holds: \[ \phi_\Lambda(\psi(D)) = \prod_{S \in \ker(\psi)} \phi_L(D \oplus S) \] This result played an essential role in the construction of elements in the second \(K\)-group of an elliptic curve given by K. Rolshausen and N. Schappacher in [J. Reine Angew. Math. 495, 61–77 (1998; Zbl 0887.11027)].
In the paper under review the author gives a proof of a general distribution formula for Siegel functions of divisors on \({\mathbb C}\) which implies Jarvis’ result when one descends to elliptic curves. The main ingredient in the proof is the distribution formula for Klein functions.

MSC:

19F15 Symbols and arithmetic (\(K\)-theoretic aspects)
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
11G16 Elliptic and modular units
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] Bayad, A.; Gómez Ayala, E. J., Formes de Jacobi et formules de distribution, J. Number Theory, 109, 136-162 (2004) · Zbl 1073.11032
[2] Coates, J., Elliptic curves with complex multiplication and Iwasawa theory, Bull. London Math. Soc., 23, 321-350 (1991) · Zbl 0752.11024
[3] Douady, R.; Douady, A., Algèbre et théories galoisiennes (2005), Cassini: Cassini Paris · Zbl 0428.12018
[4] Goncharov, A. B.; Levin, A. M., Zagier’s conjecture on \(L(E, 2)\), Invent. Math., 132, 393-432 (1998) · Zbl 1011.11043
[5] Jarvis, F., A distribution relation on elliptic curves, Bull. London Math. Soc., 32, 146-154 (2000) · Zbl 1024.11042
[6] Jarvis, F., An elementary proof of a distribution relation on elliptic curves, Manuscripta Math., 103, 329-337 (2000) · Zbl 1024.11041
[7] Kubert, D., Product formulae on elliptic curves, Invent. Math., 117, 227-273 (1994) · Zbl 0834.14016
[8] Kubert, D.; Lang, S., Modular Units (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0492.12002
[9] Lang, S., Elliptic Functions (1987), Springer-Verlag: Springer-Verlag New York · Zbl 0615.14018
[10] K. Rolshausen, Éléments explicites dans \(K_2\); K. Rolshausen, Éléments explicites dans \(K_2\)
[11] Rolshausen, K.; Schappacher, N., On the second \(K\)-group of an elliptic curve, J. Reine Angew. Math., 495, 61-77 (1998) · Zbl 0887.11027
[12] Serre, J.-P., Cours d’arithmétique (1970), PUF: PUF Paris · Zbl 0225.12002
[13] Wildeshaus, J., On an elliptic analogue of Zagier’s conjecture, Duke Math. J., 87, 355-407 (1997) · Zbl 0898.14001
[14] Wildeshaus, J., Variations on Hodge-de Rham structure and elliptic modular units, (Reznikov, A.; Schappacher, N., Regulators in Analysis, Geometry and Number Theory (2000), Birkhäuser), 295-324 · Zbl 1116.14303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.