×

An asymptotic theory for sample covariances of Bernoulli shifts. (English) Zbl 1157.60016

Summary: Covariances play a fundamental role in the theory of stationary processes and they can naturally be estimated by sample covariances. There is a well-developed asymptotic theory for sample covariances of linear processes. For nonlinear processes, however, many important problems on their asymptotic behaviors are still unanswered. The paper presents a systematic asymptotic theory for sample covariances of nonlinear time series. Our results are applied to the test of correlations.

MSC:

60F05 Central limit and other weak theorems
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G10 Stationary stochastic processes
Full Text: DOI

References:

[1] Anderson, T. W., The Statistical Analysis of Time Series (1971), Wiley: Wiley New York · Zbl 0225.62108
[2] Anderson, T. W.; Walker, A. M., On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process, Ann. Math. Statist., 35, 1296-1303 (1964) · Zbl 0125.09001
[3] Berman, S., Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist., 35, 502-516 (1964) · Zbl 0122.13503
[4] Box, G. E.P.; Jenkins, G. M.; Reinsel, G. C., Time Series Analysis: Forecasting and Control (1994), Prentice-Hall, NJ · Zbl 0858.62072
[5] Box, G. E.P.; Ljung, G. M., On a measure of a lack of fit in time series models, Biometrika, 65, 297-303 (1978) · Zbl 0386.62079
[6] Brockwell, P. J.; Davis, R. A., Time Series: Theory and Methods (1991), Springer: Springer New York · Zbl 0709.62080
[7] Chow, Y. S.; Teicher, H., Probability Theory (1988), Springer: Springer New York · Zbl 0652.60001
[8] Dedecker, J.; Doukhan, P.; Lang, G.; Leon R., J. R.; Louhichi, S.; Prieur, C., Weak Dependence: With Examples and Applications (2007), Springer: Springer New York · Zbl 1165.62001
[9] Dedecker, J.; Merlevède, F.; Volný, D., On the weak invariance principle for non-adapted sequences under projective criteria, J. Theoret. Probab., 20, 971-1004 (2007) · Zbl 1137.60016
[10] Fan, J.; Yao, Q., Nonlinear Time Series: Nonparametric and Parametric Methods (2003), Springer: Springer New York · Zbl 1014.62103
[11] Gordin, M. I., The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, 188, 739-741 (1969) · Zbl 0212.50005
[12] Grama, I. G., On moderate deviations for martingales, Ann. Probab., 25, 152-183 (1997) · Zbl 0881.60026
[13] Grama, I. G.; Haeusler, E., An asymptotic expansion for probabilities of moderate deviations for multivariate martingales, J. Theoret. Probab., 19, 1-44 (2006) · Zbl 1194.60029
[14] Hall, P.; Heyde, C. C., Martingale Limit Theorem and its Application (1980), Academic Press: Academic Press New York · Zbl 0462.60045
[15] Hannan, E. J., Multiple Time Series (1970), Wiley: Wiley New York · Zbl 0211.49804
[16] Hannan, E. J., Central limit theorems for time series regression, Z. Wahrsch. Verw. Gebiete, 26, 157-170 (1973) · Zbl 0246.62086
[17] Hannan, E. J., The asymptotic distribution of serial covariances, Ann. Statist., 4, 396-399 (1976) · Zbl 0328.62059
[18] Harris, D.; McCabe, B.; Leybourne, S., Some limit theory for autocovariances whose order depends on sample size, Econometric Theory, 19, 829-864 (2003) · Zbl 1441.62725
[19] Ho, H. C.; Hsing, T., On the asymptotic joint distribution of the sum and maximum of stationary normal random variables, J. Appl. Probab., 33, 138-145 (1996) · Zbl 0855.60052
[20] Hosking, J. R.M., Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series, J. Econom., 73, 261-284 (1996) · Zbl 0854.62084
[21] Keenan, D. M., A central limit theorem for \(m(n)\) autocovariances, J. Time Ser. Anal., 18, 61-78 (1997) · Zbl 0870.62070
[22] Peligrad, M.; Utev, S., A new maximal inequality and invariance principle for stationary sequences, Ann. Probab., 33, 798-815 (2005) · Zbl 1070.60025
[23] Phillips, P. C.B.; Solo, V., Asymptotics for linear processes, Ann. Statist., 20, 971-1001 (1992) · Zbl 0759.60021
[24] Priestley, M. B., Nonlinear and Nonstationary Time Series Analysis (1988), Academic Press: Academic Press London · Zbl 0687.62072
[25] Rosenblatt, M., Independence and dependence, (Proc. 4th Berkeley Sympos. Math. Statist. and Prob., vol II (1961), Univ. California Press: Univ. California Press Berkeley, CA), 431-443 · Zbl 0105.11802
[26] Shao, X.; Wu, W. B., Asymptotic spectral theory for nonlinear time series, Ann. Statist., 35, 1773-1801 (2007) · Zbl 1147.62076
[27] Tong, H., Non-linear Time Series: A Dynamic System Approach (1990), Oxford University Press: Oxford University Press Oxford · Zbl 0716.62085
[28] Tukey; Reflections, J., (Brillinger, D., New directions in time series analysis, Part I. New directions in time series analysis, Part I, IMA, Volumn 45 (1992), Springer: Springer NY), 387-389
[29] Volný, D., Approximating martingales and the central limit theorem for strictly stationary processes, Stochastic Process. Appl., 44, 41-74 (1993) · Zbl 0765.60025
[30] Wiener, N., Nonlinear Problems in Random Theory (1958), MIT Press: MIT Press Cambridge, MA · Zbl 0121.12302
[31] W.B. Wu, Nonlinear system theory: Another look at dependence, Proc. Nat. Journal Acad. Sci. USA 102 (2005) 14150-14154; W.B. Wu, Nonlinear system theory: Another look at dependence, Proc. Nat. Journal Acad. Sci. USA 102 (2005) 14150-14154 · Zbl 1135.62075
[32] Wu, W. B., Strong invariance principles for dependent random variables, Ann. Probab., 35, 2294-2320 (2007) · Zbl 1166.60307
[33] Wu, W. B.; Min, W., On linear processes with dependent innovations, Stochastic Process. Appl., 115, 939-958 (2005) · Zbl 1081.62071
[34] Wu, W. B.; Shao, X., Limit Theorems for Iterated Random Functions, J. Appl. Probab., 41, 425-436 (2004) · Zbl 1046.60024
[35] W.B. Wu, Z. Zhao, Moderate deviations for stationary processes, Statist. Sinica (2007) (in press); W.B. Wu, Z. Zhao, Moderate deviations for stationary processes, Statist. Sinica (2007) (in press) · Zbl 1152.62063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.