×

The Skorokhod problem in a time-dependent interval. (English) Zbl 1186.60035

Let \(D[0, \infty)\) be the space of càdlàg functions (i.e. continuous on the right with finite left limits) that are defined on \([0, \infty)\) and take values in \((-\infty, \infty).\) The space of right continuous functions whose left limits (at all points in \((0, \infty)\)) and values both lie in \([-\infty, \infty)\) (respectively, \((-\infty, \infty]\)) will be denoted as \(D^-[0, \infty)\) (respectively \(D^+[0, \infty)\)). The authors consider Skorokhod problem and extended Skorokhod problem.
Definition. Extended Skorokhod Problem (ESP) on \([l(\cdot), r(\cdot)]).\) Suppose that \(l \in D^-[0,\infty),\) \(r \in D^+[0, \infty)\) and \(l \leq r.\) Given any \(\psi \in D[0, \infty)\), a pair of functions \((\phi, \eta) \in D[0, \infty)\times D[0, \infty)\) is said to solve the ESP on \([l(\cdot), r(\cdot)])\) for \(\psi\) if and only if it satisfies the following properties: 5mm
1.
For every \(t \in [0, \infty)\), \(\phi (t) = \psi (t) + \eta (t) \in [l(t), r(t)].\)
2.
For every \(0\leq s <t<\infty,\)
\(\eta(t) - \eta(s) \geq 0\quad \text{if}\quad \phi(u) < r(u) \text{ for all} \quad u \in (s, t]\)
\(\eta(t) - \eta(s) \leq 0 \quad \text{if}\quad \phi(u) > l(u) \text{ for all}\quad u \in (s, t]\)
3.
For every \(0\leq t < \infty\),
\(\eta(t) - \eta(s) \geq 0\)if \(\phi(t) < r(t)\).
\(\eta(t) - \eta(s) \leq 0\)if \(\phi(t) > l(t)\),
where \(\eta (0-)\) is to be interpreted as \(0.\)
The following theorem is the main result in this paper.
Theorem. Suppose that \(l \in D^-[0,\infty)\), \(r \in D^+[0, \infty\) and \(l\leq r.\) Then for each \(\psi \in D[0, \infty,\) there exists a unique pair \((\phi, \eta) \in D[0,\infty) \times D[0, \infty)\) that solves the ESP on \([l(\cdot), r(\cdot)]\) for \(\psi.\) Moreover, the ESM \(\bar\Gamma_{l,r}\) admits the following explicit representation: \(\bar\Gamma_{l,r} =\psi - \Xi_{l, r} (\psi),\) where the mapping \(\Xi_{l, r} : D[0, \infty) \mapsto D[0, \infty)\) is defined as following: for each \(t \in [0,\infty),\)
\[ \begin{aligned} \Xi_{l, r} (\psi(t) \dot=& \max \Biggl( \Biggl[ (\psi(0) - r(0))^+ \wedge \inf_{ u\in [0, t]} (\psi (u) - l(u)) \Biggr],\\ & \sup_{s\in [0,t]}\Biggl[ (\psi(s) - r(s))^+ \wedge \inf_{ u\in [s, t]} (\psi (u) - l(u)) \Biggr]\Biggr),\end{aligned} \]
Furthermore, the map \((l, r, \psi) \mapsto \bar\Gamma_{l, r}\) is a continuous map on \(D^-[0, \infty) \times D^+[0,\infty)\times D[0,\infty)\) (with respect to topology of uniform convergence on compact sets). Lastly, if \(\inf_{t \geq 0} (r(t) - l(t)) > 0\) then \(\Gamma_{l, r} = \bar\Gamma_{l,r}\).
The authors apply analysis of the one-dimensional reflected Brownian motion in a time-dependent interval to study the behavior of the constraining process and, in particular, the semimartingale property of a class of two-dimensional reflected Brownian motions in a fixed domain. Reflecting Brownian motions in time-dependent domains arise in queueing theory, statistical physics, control theory and finance.

MSC:

60G17 Sample path properties
60J65 Brownian motion

References:

[1] Burdzy, K., Multidimensional Brownian Excursions and Potential Theory (1987), Longman: Longman London · Zbl 0691.60066
[2] Burdzy, K.; Chen, Z.-Q.; Sylvester, J., The heat equation and reflected Brownian motion in time-dependent domains, Ann. Probab., 32, 1B, 775-804 (2004) · Zbl 1046.60060
[3] Burdzy, K.; Chen, Z.-Q.; Sylvester, J., The heat equation and reflected Brownian motion in time-dependent domains II: Singularities of solutions, J. Funct. Anal., 204, 1-34 (2003) · Zbl 1058.60062
[4] Burdzy, K.; Toby, E., A Skorohod-type lemma and a decomposition of reflected Brownian motion, Ann. Probab., 23, 586-604 (1995) · Zbl 0882.60036
[5] Burdzy, K.; Nualart, D., Brownian motion reflected on Brownian motion, Probab. Theory Related Fields, 122, 471-493 (2002) · Zbl 0995.60078
[6] Chitashvili, R. J.; Lazrieva, N. L., Strong solutions of stochastic differential equations with boundary conditions, Stochastics, 5, 255-309 (1981) · Zbl 0479.60062
[7] Doob, Measure Theory (1993), Springer-Verlag: Springer-Verlag New York
[8] Durrett, R., Probability Theory and Examples (1991), Wadsworth: Wadsworth Pacific Grove, California · Zbl 0709.60002
[9] El Karoui, N.; Kapoudjian, C.; Pardoux, E.; Peng, S.; Quenez, M. C., Reflected solutions of backward SDEs, and related obstacle problems for PDEs, Ann. Probab., 25, 702-737 (1997) · Zbl 0899.60047
[10] El Karoui, N.; Karatzas, I., A new approach to the Skorohod problem, and its applications, Stoch. Stoch. Rep., 34, 57-82 (1991) · Zbl 0735.60046
[11] W.N. Kang, K. Ramanan, A Dirichlet process characterization of a class of multi-dimensional reflected diffusions, Preprint; W.N. Kang, K. Ramanan, A Dirichlet process characterization of a class of multi-dimensional reflected diffusions, Preprint · Zbl 1202.60059
[12] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0638.60065
[13] Konstantopoulos, T.; Anantharam, V., An optimal flow control scheme that regulates the burstiness of traffic subject to delay constraints, IEEE/ACM Trans. Networking, 3, 423-432 (1995)
[14] L. Kruk, J. Lehoczky, K. Ramanan, S. Shreve, Double Skorokhod map and reneging real-time queues, in: A Festschrift Volume for Tom Kurtz, Proc. of Markov Processes and Related Topics (in press), Preprint; L. Kruk, J. Lehoczky, K. Ramanan, S. Shreve, Double Skorokhod map and reneging real-time queues, in: A Festschrift Volume for Tom Kurtz, Proc. of Markov Processes and Related Topics (in press), Preprint · Zbl 1170.60314
[15] Kruk, L.; Lehoczky, J.; Ramanan, K.; Shreve, S., An explicit formula for the Skorokhod map on \([0, a]\), Ann. Probab., 35, 5, 1740-1768 (2007) · Zbl 1139.60017
[16] Mandelbaum, A.; Massey, W., Strong approximations for time-dependent queues, Math. Oper. Res., 20, 33-63 (1995) · Zbl 0834.60096
[17] Ramanan, K., Reflected diffusions defined via the extended Skorokhod map, Electron. J. Probab., 11, 934-992 (2006) · Zbl 1111.60043
[18] Ramanan, K.; Reiman, M., Fluid and heavy traffic diffusion limits for a generalized processor sharing model, Ann. Appl. Probab., 13, 100-139 (2003) · Zbl 1016.60083
[19] Ramanan, K.; Reiman, M., The heavy traffic limit of an unbalanced generalized processor sharing model, Ann. Appl. Probab., 18, 1, 22-58 (2008) · Zbl 1144.60056
[20] Shiga, T.; Watanabe, S., Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27, 37-46 (1973) · Zbl 0327.60047
[21] Skorokhod, A. V., Stochastic equations for diffusions in a bounded region, Theory Probab. Appl., 6, 264-274 (1961) · Zbl 0215.53501
[22] Soucaliuc, F.; Werner, W., A note on reflecting Brownian motions, Electron. Commun. Probab., 7, 117-122 (2002) · Zbl 1009.60068
[23] Whitt, W., (Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Applications to Queues. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Applications to Queues, Springer Series in Operations Research (2002), Springer-Verlag: Springer-Verlag New York) · Zbl 0993.60001
[24] Williams, R. J., Reflected Brownian motion in a wedge: Semimartingale property, Probab. Theory Related Fields, 69, 161-176 (1985) · Zbl 0535.60042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.