×

Duality and penalization in optimization via an augmented Lagrangian function with applications. (English) Zbl 1182.90097

To establish good candidates that an augmented Lagrangian functions reaches a zero duality gap, is a nice challenge in optimization, This paper provides an instance where it is possible to reach such goals.
After introducing the concepts of a valley at 0 augmenting function and the corresponding augmented Lagrangian problem, it is established the existence of solutions of a primal problem and its valley at 0 augmented Lagrangian problem in a reflexive Banach space. Then, the zero duality gap property is stated between the primal problem and the valley at 0 augmented Lagrangian dual problem.
Finally, the results are applied to an inequality and equality constrained optimization problem in infinite-dimensional spaces and variational problems in Sobolev spaces.

MSC:

90C48 Programming in abstract spaces
Full Text: DOI

References:

[1] Cea, J.: Lectures on Optimization-Theory and Algorithms. Springer, Berlin (1978) · Zbl 0409.90050
[2] Luenberger, D.G.: Linear and Nonlinear Programming. Kluwer Academic, Berlin (1984)
[3] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969) · Zbl 0174.20705 · doi:10.1007/BF00927673
[4] Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974) · doi:10.1137/0312021
[5] Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993) · Zbl 0779.49024 · doi:10.1137/1035044
[6] Bertsekas, D.P.: Constrained Optimization and Lagrangian Multiplier Methods. Academic, New York (1982) · Zbl 0572.90067
[7] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)
[8] Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003) · Zbl 1082.90135 · doi:10.1287/moor.28.3.533.16395
[9] Rubinov, A.M., Huang, X.X., Yang, X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002) · Zbl 1082.90567 · doi:10.1287/moor.27.4.775.295
[10] Zhou, Y.Y., Yang, X.Q.: Some results about duality and exact penalization. J. Glob. Optim. 29, 497–509 (2004) · Zbl 1075.90077 · doi:10.1023/B:JOGO.0000047916.73871.88
[11] Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991) · Zbl 0737.90060 · doi:10.1137/0329054
[12] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) · Zbl 0582.49001
[13] Rubinov, A.M., Glover, B.M., Yang, X.Q.: Decreasing functions with applications to penalization. SIAM J. Optim. 10, 289–313 (1999) · Zbl 0955.90127 · doi:10.1137/S1052623497326095
[14] Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976) · Zbl 0404.90100 · doi:10.1287/moor.1.2.165
[15] Ito, K., Kunisch, K.: Augmented Lagrangian-SQP-method in Hilbert space and application to control in the coefficients problems. SIAM J. Optim. 6, 96–125 (1996) · Zbl 0846.65026 · doi:10.1137/0806007
[16] Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002) · Zbl 1020.91017 · doi:10.1137/S1064827500382324
[17] Penot, J.P.: Augmented Lagrangians, duality and growth conditions. J. Nonlinear Convex Anal. 3, 283–302 (2002) · Zbl 1030.49035
[18] Rubinov, A.M., Yang, X.Q.: Lagrange-Type Functions in Constrained Non-convex Optimization. Kluwer Academic, Berlin (2003) · Zbl 1049.90066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.