×

Motion control of the flexible manipulator via controllable local degrees of freedom. (English) Zbl 1170.70315

Summary: In order to improve motion accuracy of the flexible manipulator, an idea of using its topological characteristics to suppress vibration is suggested. The concept of controllable local degree of freedom is proposed and introduced to the topological structure of the flexible manipulator. It is shown that the arbitrary motion provided by the controllable local degrees of freedom plays an important role in eliminating undesired effects of the flexibility. On this basis, a method for reducing motion error of the flexible manipulator is put forward. By planning the motion of controllable local degrees of freedom, the appropriate control force can be constructed to increase the damping force and eliminate the exciting force of the flexible manipulator, thereby improving the end-effector accuracy. The results, demonstrated by the numerical simulations, are highly promising and suggest that controllable local degrees of freedom can be a useful tool in combating the undesired vibration deformation of the flexible manipulator.

MSC:

70E60 Robot dynamics and control of rigid bodies
70Q05 Control of mechanical systems
74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI

References:

[1] Wang, F.Y., Russel, J.Y.: Minimum weight robot arm for a specified fundamental frequency. J. Robot. Syst. 13(1), 157–161 (1997)
[2] Cui, L.L., Xiao, Z.Q.: Optimum structure design of flexible manipulators based on GA. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems, vol. 2, pp. 1622–1626 (2003)
[3] Kumar, R., Dwivedy, S.K., Dixit, U.S.: Shape optimization of a flexible robot manipulator, In: Proceedings of National Conference on Industrial Problems in Machines and Mechanisms (IPROMM-05), IIT Kharagpur, India (2005)
[4] Benosman, M., Vey, G.L.: Control of flexible manipulators: a survey. Robotica 22, 533–545 (2004) · doi:10.1017/S0263574703005642
[5] Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006) · Zbl 1095.70005 · doi:10.1016/j.mechmachtheory.2006.01.014
[6] Choi, S.B., Cho, S.S., Sin, H.C., Kim, H.K.: Quantitative feedback theory control of a single-link flexible manipulator featuring piezoelectric actuator and sensor. Smart Mater. Struct. 8, 338–349 (1999) · doi:10.1088/0964-1726/8/3/306
[7] Ge, S.S., Lee, T.H., Gong, J.Q., Wang, Z.P.: Model-free controller design for a single-link flexible smart materials robots. Int. J. Control 73(6), 531–544 (2000) · Zbl 1006.93554 · doi:10.1080/002071700219533
[8] Sun, D., Mills, J.K., Shan, J., Tso, S.K.: A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14, 381–401 (2004) · doi:10.1016/S0957-4158(03)00066-7
[9] Krishnamurthy, K., Chandrashekhara, K., Roy, S.: A study of single-link robots fabricated from orthotropic composite materials. Comput. Struct. 136(1), 139–146 (1990) · Zbl 0708.73052 · doi:10.1016/0045-7949(90)90183-3
[10] Saravanos, D.A., Lamancusa, J.S.: Optimal structural design of robotic manipulators with fiber reinforced composite materials. Comput. Struct. 36(1), 119–132 (1990) · Zbl 0708.73047 · doi:10.1016/0045-7949(90)90181-Z
[11] Nechev, D.N.: Redundancy resolution through local optimization: A review. J. Robot. Syst. 6(6), 769–798 (1989) · Zbl 0687.70002 · doi:10.1002/rob.4620060607
[12] Siciliano, B.: Kinematic control of redundant robot manipulators: A tutorial. J. Intell. Robot. Syst. 3, 201–212 (1990) · doi:10.1007/BF00126069
[13] Nguyen, L.A., Walker, I.D., Defigueiredo, R.J.P.: Dynamic control of flexible kinematically redundant robot manipulators. IEEE Trans. Robot. Autom. 8(6), 759–767 (1992) · doi:10.1109/70.182676
[14] Yue, S.: Weak-vibration configurations for flexible robot manipulators with kinematic redundancy. Mech. Mach. Theory 35(2), 165–178 (2000) · Zbl 1047.70555 · doi:10.1016/S0094-114X(98)00071-8
[15] Zhang, X., Yu, Y.-Q.: Motion control of flexible robot manipulators via optimizing redundant configurations. Mech. Mach. Theory 36(7), 883–892 (2001) · Zbl 1140.70451 · doi:10.1016/S0094-114X(01)00020-9
[16] Bian, Y.: Study on joint-torque minimization for the flexible redundant manipulator via its second optimization capability. Acta Aeronaut. Astronaut. Sin. 26(1), 111–115 (2005)
[17] Bian, Y.: Research on dynamics and control of flexible redundant manipulators. Ph.D. Dissertation, Beihang University, Beijing (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.