×

Numerical solutions of Euler-Poisson systems for potential flows. (English) Zbl 1157.78363

Summary: Steady-state Euler-Poisson systems for potential flows are studied here from a numerical point of view. The main idea is to use iterative schemes to solve a system of linear partial differential equations together with nonlinear algebraic equations instead of solving a fully nonlinear system of partial differential equations. We present two numerical schemes of finite volume type to compute approximate solutions of the systems for semiconductors in unipolar and bipolar cases. The numerical simulations are carried out in two space dimensions, in which some smallness conditions on given data and parameters in the proof of existence of solutions to the systems are clearly illustrated.

MSC:

78M25 Numerical methods in optics (MSC2010)
82D37 Statistical mechanics of semiconductors
Full Text: DOI

References:

[1] Ali, G.; Jüngel, A., Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas, J. Differential Equations, 190, 663-685 (2003) · Zbl 1020.35072
[2] Arimburgo, F.; Baiocchi, C.; Marini, L. D., Numerical approximation of the 1-D nonlinear drift-diffusion model in semiconductors, (Nonlinear Kinetic Theory and Mathematical Aspects of Hyperbolic Systems. Nonlinear Kinetic Theory and Mathematical Aspects of Hyperbolic Systems, Rappallo, 1992 (1992), World Scientific: World Scientific Singapore), 1-10
[3] Ascher, U.; Markowich, P. A.; Pietra, P.; Schmeiser, C., A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., 1, 347-376 (1991) · Zbl 0800.76032
[4] Baccarani, G.; Wordeman, M. R., An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid State Electronics, 28, 407-416 (1985)
[5] Blotekjær, K., Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices, 17, 38-47 (1970)
[6] Brezzi, F.; Marini, L. D.; Pietra, P., Numerical simulation of semiconductor devices, Comput. Methods Appl. Mech. Engrg., 75, 493-514 (1989) · Zbl 0698.76125
[7] Chainais-Hillairet, C.; Liu, J. G.; Peng, Y. J., Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis, Math. Models Anal. Numer., 37, 319-338 (2003) · Zbl 1032.82038
[8] Chainais-Hillairet, C.; Peng, Y. J., Finite volume approximation for degenerate drift-diffusion system in several space dimensions, Math. Models Methods Appl. Sci., 14, 3, 461-481 (2004) · Zbl 1127.65319
[9] Chen, F., Introduction to Plasma Physics and Controlled Fusion, Vol. 1 (1984), Plenum Press: Plenum Press New York
[10] Chen, Z. X.; Cockburn, B., Analysis of a finite element method for the drift-diffusion semiconductor device equations: The multidimensional case, Numer. Math., 71, 1-28 (1995) · Zbl 0830.65116
[11] Cockburn, B.; Triandaf, I., Error estimates for a finite element method for the drift-diffusion semiconductor device equations: The zero diffusion case, Math. Comput., 63, 51-76 (1994) · Zbl 0806.65129
[12] Crispel, P.; Degond, P.; Parzani, C.; Vignal, M. H., Trois formulations d’un modèle de plasma quasi-neutre avec courant non nul, C. R. Acad. Sci. Paris, Ser. I, 338, 327-332 (2004) · Zbl 1035.76061
[13] Crispel, P.; Degond, P.; Vignal, M. H., Quasi-neutral fluid models for current-carrying plasmas, J. Comp. Phys., 205, 408-438 (2005) · Zbl 1087.82022
[14] Crispel, P.; Degond, P.; Vignal, M. H., An asymptotically stable discretization for the Euler-Poisson system in the quasi-neutral limit, C. R. Acad. Sci. Paris, Ser. I, 341, 323-328 (2005) · Zbl 1203.76179
[15] Degond, P.; Markowich, P. A., On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3, 3, 25-29 (1990) · Zbl 0736.35129
[16] Degond, P.; Markowich, P. A., A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl. (IV), CLXV, 87-98 (1993) · Zbl 0808.35150
[17] Droniou, J.; Eymard, R., A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105, 1, 35-71 (2006) · Zbl 1109.65099
[18] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, (Handbook of Numerical Analysis, vol. VII (2000), North-Holland: North-Holland Amsterdam), 713-1020 · Zbl 0981.65095
[19] Eymard, R.; Gallouët, T.; Herbin, R., A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26, 2, 326-353 (2006) · Zbl 1093.65110
[20] Gamba, I. M., Stationary transonic solutions for a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations, 17, 553-577 (1992) · Zbl 0748.35049
[21] Gardner, C. L., Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device, IEEE Trans. Electron Devices, 28, 392-398 (1991)
[22] Gardner, C. L.; Jerome, J. W.; Rose, D. J., Numerical methods for the hydrodynamic device model: subsonic flow, IEEE Trans. Computer-Aided Design, 8, 501-507 (1989)
[23] Gummel, H. K., A self-consistent iterative scheme for one-dimensional steady-state transistor calculations, IEEE Trans. Electron Devices, 11, 455-465 (1964)
[24] Jüngel, A., Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion, Z. Angew. Math. Mech., 75, 783-799 (1995) · Zbl 0866.35056
[25] Jüngel, A.; Peng, Y. J., A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limit, Comm. Partial Differential Equations, 24, 1007-1033 (1999) · Zbl 0946.35074
[26] Jüngel, A.; Pietra, P., A discretization scheme for a quasi-hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., 7, 935-955 (1997) · Zbl 0907.35075
[27] Marcati, P.; Natalini, R., Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rat. Mech. Anal., 129, 129-145 (1995) · Zbl 0829.35128
[28] Markowich, P. A., The Stationary Semiconductor Device Equations (1986), Springer: Springer New York
[29] Markowich, P. A.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations (1990), Springer-Verlag: Springer-Verlag Wien, New York · Zbl 0765.35001
[30] Peng, Y. J., Some asymptotic analysis in steady state Euler-Poisson equations for potential flow, Asymptotic Anal., 36, 75-92 (2003) · Zbl 1051.82026
[31] Peng, Y. J.; Violet, I., Asymptotic expansions in a steady-state Euler-Poisson system and convergence to incompressible Euler equations, Math. Models Methods Appl. Sci., 15, 5, 717-736 (2005) · Zbl 1074.35077
[32] Sacco, R.; Saleri, F., Mixed finite volume methods for semiconductor device simulation, Numer. Meth. Partial Differential Equations, 13, 215-236 (1997) · Zbl 0890.65132
[33] I. Violet, High order expansions in quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh Sect. A, in press; I. Violet, High order expansions in quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh Sect. A, in press · Zbl 1140.35384
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.