×

Synapses as stochastic concurrent systems. (English) Zbl 1155.92007

Authors’ summary: A stochastic model of the presynaptic terminal in the calyx of Held synapse is presented. This model exploits process calculi as a representation language and has a direct computational implementation that supports quantitative simulation trials of the behaviour of the synapse. The model builds upon available data, the fitting of some parameters and developed working hypotheses. Experiments about plasticity have been carried out regarding synaptic facilitation and potentiation. Also, synaptic depression has been considered in a model exhibiting dynamical equilibrium. Overall, the simulation results are coherent with the experimental findings appearing in the literature about the modeled reality. These results represent a quite detailed description of the presynaptic activity. This multidisciplinary work validates some aspects of the approach based on process calculi with respect to the new application domain, such as abstraction, expressiveness and compositionality.

MSC:

92C20 Neural biology
68T05 Learning and adaptive systems in artificial intelligence
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
Full Text: DOI

References:

[1] Rediscovering Biology — Molecular to Global Perspectives — Neurobiology. http://www.learner.org/channel/courses/biology/support/10_neuro.pdf; Rediscovering Biology — Molecular to Global Perspectives — Neurobiology. http://www.learner.org/channel/courses/biology/support/10_neuro.pdf
[2] Becherer, U.; Retting, J., Vesicle pools docking, priming, and release, Cell Tissue Research, 326, 393-407 (2006)
[3] Bollmann, J. H.; Sakmann, B., Control of synaptic strength and timing by the release-site \(Ca^{2+}\) signal, Nature Neuroscience, 8, 426-434 (2005)
[4] Bracciali, A.; Brunelli, M.; Cataldo, E.; Degano, P., Expressive models for synaptic plasticity, (Calder, M.; Gilmore, S., Computational Methods in System Biology. Computational Methods in System Biology, CMSB’07. Computational Methods in System Biology. Computational Methods in System Biology, CMSB’07, LNBI (2007), Springer: Springer Edinburgh), 152-167
[5] Bracciali, A.; Brunelli, M.; Cataldo, E.; Degano, P., Stochastic models for the in silico simulation of synaptic processes, BMC Bioinformatics, 9, S7 (2008)
[6] Calder, M.; Duguid, A.; Gilmore, S.; Hillston, J., Stronger computational modelling of signalling pathways using both continuous and discrete-state methods, (Priami, Corrado, Computational Methods in Systems Biology (CMSB06). Computational Methods in Systems Biology (CMSB06), LNCS, vol. 4210 (2006), Springer), 63-77
[7] Calder, M.; Gilmore, S.; Hillston, J., Modelling the influence of rkip on the erk signalling pathway using the stochastic process algebra pepa, Transactions on Computational System Biology VII, LNBI, 4230, 1-23 (2006)
[8] Cardelli, L., Brane calculi-interactions of biological membranes, (Vincent, V.; Schachter, V., Proceedings of Computational Methods in Systems Biology. Proceedings of Computational Methods in Systems Biology, LNCS, vol. 3082 (2004), Springer: Springer Paris), 257-280 · Zbl 1088.68657
[9] Cardelli, L., On process rate semantics, Theoretical Computer Science, 391, 3, 190-215 (2008) · Zbl 1133.68054
[10] Cassman, M.; Arkin, A.; Doyle, F.; Katagiri, F.; Lauffenburger, D.; Stokes, C., System Biology — International Research and Development (2007), Springer: Springer The Netherlands
[11] Chiarugi, D.; Curti, M.; Degano, P.; Marangoni, R., Vice: A virtual cell, (Danos, V.; Schächter, V., Computational Methods in Systems Biology. Computational Methods in Systems Biology, CMSB 2004. Computational Methods in Systems Biology. Computational Methods in Systems Biology, CMSB 2004, LNCS, vol. 3082 (2004), Springer), 207-220 · Zbl 1088.68818
[12] Cooper, L. N.; Intrator, N.; Blais, B. S.; Shouval, H. Z., Theory of Cortical Platicity (2004), World Scientific: World Scientific New Jersey · Zbl 1141.92309
[13] Dayan, P.; Abbot, L. F., Theoretical Neuroscience — Computational and Mathematical Modeling of Neural Systems (2001), The MIT Press: The MIT Press Cambridge · Zbl 1051.92010
[14] de Lange, R. P.J.; de Roos, A. D.G.; Borst, A. G.G., Two modes of vesicle recycling in the rat calyx of Held, Journal of Neuroscience, 23, 10164-10173 (2003)
[15] Destexhe, A.; Mainen, Z. F.; Sejnowski, T. J., Synthesis of models for excitable membrane, synaptic transmission and neuromodulation using a common kinetic formulation, Journal of Computational Neuroscience, 1, 195-231 (1994)
[16] Ermentrout, B., Simulating, Analyzing, and Animating Dynamical Systems (2002), SIAM: SIAM Philadelphia · Zbl 1003.68738
[17] (Fall, C. P.; Marland, E. S.; Wagner, J. M.; Tyson, J. J., Computational Cell Biology (2005), Springer: Springer New York) · Zbl 1010.92019
[18] Felmy, F.; Neher, E.; Schneggenburger, R., Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation, Neuron, 37, 801-811 (2003)
[19] Frotscher, M.; Gundelfinger, E.; Jonas, P.; Neher, E.; Seeburg, P., The most important recent advances in synapse research from my point of view—and what remains to be done, Cell Tissue Research, 326, 203-204 (2006)
[20] Gardiner, C. W., Handbook of Stochastic Methods — for Physics, Chemistry and the Natural Science (2001), Springer: Springer Berlin · Zbl 0862.60050
[21] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, 81, 2340-2361 (1977)
[22] Gillespie, D. T.; Petzold, L. R., Numerical simulation for biochemical kinetics, (Szallasi, Z.; Stelling, J.; Perival, V., System Modeling in Cellular Biology (2006), The MIT Press: The MIT Press Cambridge), 331-354
[23] Graham, B. P.; Wong, A. Y.C.; Forsythe, I. D., A computational model of synaptic transmission at the calyx of Held, Neurocomputing, 38-40, 37-42 (2001)
[24] Graham, B. P.; Wong, A. Y.C.; Forsythe, I. D., A multi-component model of depression at the calyx of Held, Neurocomputing, 58-60, 449-554 (2004)
[25] Habets, R. L.P.; Borst, J. G.G., Dynamics of the readily releasable pool during post-tetanic potentiation in the rat calyx of Held synapse, Journal of Physiology, 581, 467-478 (2007)
[26] Hillston, J., A Compositional Approach to Performance Modelling (1996), Cambridge University Press: Cambridge University Press Cambridge
[27] Hosoi, N.; Sakaba, T.; Neher, E., Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse, Journal of Neuroscience, 27, 14286-14298 (2007)
[28] Van Kampen, N. G., Stochastic processes in physics and in chemistry (1992), Elsevier: Elsevier Amsterdam · Zbl 0974.60020
[29] Kierzek, A. M., Stocks: Stochastic kinetic simulations of biochemical system with Gillespie algorithm, Bioinformatics, 18, 470-481 (2002)
[30] Kitano, H., Systems biology: A brief overview, Theoretical Computer Science, 295, 5560, 1662-1664 (2002)
[31] (Koch, C.; Segev, I., Methods in Neuronal Modeling (1998), The MIT Press: The MIT Press Cambridge)
[32] Lecca, P.; Priami, C.; Quaglia, P.; Rossi, B.; Laudanna, C.; Costantin, G., A stochastic process algebra approach to simulation of autoreactive lymphocyte recruitment, SIMULATION: Transactions of the society for modelling and simulation international, 80, 4, 273-288 (2004)
[33] Lou, X.; Scheuss, V.; Schneggenburger, R., Allosteric modulation of the presynaptic \(Ca^{2+}\) sensor for vesicle fusion, Nature, 435, 497-501 (2005)
[34] Meinrenken, C. J.; Borst, J. G.G.; Sakmann, B., The Hodgkin-Huxley-Katz prize lecture, Local routes revisited: The space and time dependence of the \(Ca^{2+}\) signal for phasic transmitter release at the rat calyx of Held, The Journal of Physiology, 547, 665-689 (2003)
[35] Miculan, M.; Bacci, G., Modal logics for brane calculus, (Priami, Corrado, Computational Methods in Systems Biology. Computational Methods in Systems Biology, CMSB06. Computational Methods in Systems Biology. Computational Methods in Systems Biology, CMSB06, LNCS, vol. 4210 (2006), Springer), 1-16
[36] Milner, R., Communicating and Mobile Systems: The \(\pi \)-Calculus (1999), Cambridge University Press · Zbl 0942.68002
[37] Mitra, P. P.; Bokil, H., Observed brain dynamics (2008), Oxford UP: Oxford UP Oxford
[38] Nagasaki, M.; Onami, S.; Miyano, S.; Kitano, H., Bio-calculus: Its concept and molecular interaction, Genome Informatics, 10, 133-143 (1999)
[39] Neher, E., A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse, Pflugers Arch - European Journal of Physiology, 453, 261-268 (2006)
[40] Neher, E., Short-term plasticity turns plastic, Focus on synaptic transmission at the calyx of Held under in vivo-like activity levels, Journal of Neurophysiology, 98, 577-578 (2007)
[41] Phillips, A.; Cardelli, L., Efficient, correct simulation of biological processes in the stochastic pi-calculus, (Calder, M.; Gilmore, S., Proceedings of Computational Methods in Systems Biology. Proceedings of Computational Methods in Systems Biology, LNCS, vol. 4695 (2007), Springer: Springer Edinburgh), 184-199
[42] Priami, C., Stochastic \(\pi \)-calculus, The Computer Journal, 36, 6, 578-589 (1995)
[43] Priami, C.; Regev, A.; Shapiro, E.; Silvermann, W., Application of a stochastic name-passing calculus to representation and simulation of molecular processes, Theoretical Computer Science, 325, 1, 141-167 (2004) · Zbl 1069.68569
[44] Ramsey, S.; Orell, D.; Bolouri, H., Dizzy: Stochastic simulation of large-scale genetic regulatory networks, Journal of Bioinformatics and Computational Biology, 3, 2, 415-436 (2005)
[45] Regev, A.; Panina, E.; Silverman, W.; Cardelli, L.; Shapiro, E., Bioambients: An abstraction for biological compartements, Theoretical Computer Science, 325, 1, 141-167 (2004) · Zbl 1069.68569
[46] Regev, A.; Shapiro, E., Cellular abstractions: Cells as computation, Nature, 419, 343 (2002)
[47] Sakaba, T., Roles of fast-releasing and the slowly-releasing vescicles in synaptic transmission at the calyx of Held, Journal of Neuroscience, 26, 5863-5871 (2006)
[48] Sakaba, T.; Schneggenburger, R.; Neher, E., Estimation of quantal parameters at the calyx of Held synapse, Neuroscience Research, 44, 343-356 (2002)
[49] Sakaba, T.; Stein, A.; Jahn, R.; Neher, E., Distinct kinetic changes in neurotransmitter release after snare protein cleavage, Science, 309, 491-494 (2005)
[50] Schneggenburger, R.; Forsythe, I. D., The calxy of Held, Cell Tissue Research, 326, 311-337 (2006)
[51] Schneggenburger, R.; Neher, E., Intracellular calcium dependence of transmitter release rates at a fast central synapse, Nature, 46, 889-893 (2000)
[52] Schneggenburger, R.; Neher, E., Presynaptic calcium and control of vesicle fusion, Current Opinion in Neurobiology, 15, 266-274 (2005)
[53] Schneggenburger, R.; Sakaba, T.; Neher, E., Vescicle pools and short-term synaptic depression: Lessons from a large synapse, Trends in Neurosciences, 25, 206-212 (2002)
[54] Smith, G. D., Modeling the stochastic gating of ion channels, (Fall, C. P.; Marland, E. S.; Wagner, J. M.; Tyson, J. J., Computational Cell Biology (2005), Springer: Springer New York), 285-319
[55] Smolen, P. D.; Baxter, D. A.; Byrne, J. H., Mathematical modeling and analysis of intracellular signaling pathways, (Byrne, J. H.; Roberts, J. L., From Molecules to Networks — An Introduction to Cellular and Molecular Neuroscience (2004), Elsevier - Academic Press), 391-429 · Zbl 1081.92006
[56] Sorensen, J. B., Formation, stabilization and fusion of the readily releasable pool of secretory vescicles, Pflugers Arch - European Journal of Physiology, 448, 347-362 (2004)
[57] Sudhof, T. C., The synaptic vesicle cycle, Annual Review of Neuroscience, 27, 509-547 (2004)
[58] Ullah, M.; Wolkenhauer, O., Family tree of markov models in systems biology, IET System Biology, 1, 247-254 (2007)
[59] Weis, S.; Schneggenburger, R.; Neher, E., Properties of a model of \(Ca^{2+}\)-dependent vescicle pool dynamics and short term synaptic depression, Biophysical Journal, 77, 2418-2429 (1999)
[60] Wilkinson, D. J., Stochastic Modelling for System Biology (2006), Chapman and Hall - CRC Press: Chapman and Hall - CRC Press London · Zbl 1099.92004
[61] Wolfel, M.; Lou, X.; Schneggenburger, R., A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse, Journal of Neuroscience, 27, 3198-3210 (2007)
[62] Wong, A. Y.C.; Graham, B. P.; Billups, B.; Forsythe, I. D., Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potentials trains, Journal of Neuroscience, 23, 4868-4877 (2003)
[63] Zucker, R. S.; Kullmann, D. M.; Schwartz, T. L., Release of neurotransmitters, (Byrne, J. H.; Roberts, J. L., From Molecules to Networks — An Introduction to Cellular and Molecular Neuroscience (2004), Elsevier), 197-244 · Zbl 1081.92006
[64] Zucker, R. S.; Regehr, W. G., Short-term synaptic plasticity, Annual Review of Physiology, 64, 355-405 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.